
The BEDTools manual
Version 2.4.0

Aaron R. Quinlan and Ira M. Hall
University of Virginia

Contact: aaronquinlan@gmail.com

mailto:aaronquinlan@gmail.com
mailto:aaronquinlan@gmail.com

..1. OVERVIEW 6
1.1 BACKGROUND.. 6
1.2 SUMMARY OF AVAILABLE TOOLS... 7
1.3 FUNDAMENTAL CONCEPTS REGARDING BEDTOOLS USAGE .. 8

...1.3.1 What are genome features and how are they represented? 8
..1.3.2 Overlapping / intersecting features. 8

...1.3.3 Comparing features in file “A” and file “B”. 9
..1.3.4 BED starts are zero-based and BED ends are one-based. 9

...1.3.5 GFF starts and ends are one-based. 9
..1.3.6 File B is loaded into memory. 10

...1.3.7 Feature files must be tab-delimited. 10
..1.3.8 All BEDTools allow features to be “piped” via standard input. 10

...1.3.9 Most BEDTools write their results to standard output. 10
..1.3.10 What is a “genome” file? 11

..1.3.11 Paired-end BED files (BEDPE files). 11
...1.3.12 Use “-h” for help with any BEDTool. 11

...1.3.13 BED features must not contain negative positions. 12

...1.3.14 The start position must be <= to the end position. 12
..1.3.15 Headers are allowed in GFF and BED files 12

1.4 IMPLEMENTATION AND ALGORITHMIC APPROACH... 13
1.5 LICENSE AND AVAILABILITY... 13
1.6 DISCUSSION GROUP.. 13

..2. INSTALLATION 14

..3. “QUICK START” GUIDE 14
3.1 INSTALL BEDTOOLS.. 14
3.2 USE BEDTOOLS... 14

..4. GENERAL USAGE INFORMATION 16
4.1 SUPPORTED FILE FORMATS... 16

...4.1.1 BED format 16
...4.1.2 BEDPE format 18

...4.1.3 GFF format 20
..4.1.4 Genome files 21

...4.1.5 SAM/BAM format 21

..5. THE BEDTOOLS SUITE 22
5.1 INTERSECTBED.. 22

..5.1.1 Usage and option summary 22
..5.1.2 Default behavior 23

..5.1.3 Reporting the original A feature (-wa) 23
...5.1.4 Reporting the original B feature (-wb) 24

..5.1.5 Reporting the presence of at least one overlapping feature (-u) 24
..5.1.6 Reporting the number of overlapping features (-c) 25

..5.1.7 Reporting the absence of any overlapping features (-v) 25
..5.1.8 Requiring a minimal overlap fraction (-f) 26

..5.1.9 Requiring reciprocal minimal overlap fraction (-r, combined with -f) 26
..5.1.10 Enforcing “strandedness” (-s) 27

...5.1.11 Default behavior when using BAM input (-abam) 27
...5.1.12 Output BED format when using BAM input (-bed) 28

5.2 PAIRTOBED ... 29
..5.2.1 Usage and option summary 29

..5.2.2 Default behavior 30
...5.2.3 Optional overlap requirements (-type) 30

..5.2.4 Requiring a minimum overlap fraction (-f) 34
...5.2.5 Enforcing “strandedness” (-s) 35

...5.2.6 Default is to write BAM output when using BAM input (-abam) 35

2

...5.2.7 Output BEDPE format when using BAM input (-bedpe) 36
5.3 PAIRTOPAIR .. 37

..5.3.1 Usage and option summary 37
..5.3.2 Default behavior 37

..5.3.3 Optional overlap requirements (-type neither) 38
5.4 BAMTOBED ... 39

..5.4.1 Usage and option summary 39
5.5 WINDOWBED.. 41

..5.5.1 Usage and option summary 41
..5.5.2 Default behavior 42

...5.5.3 Defining a custom window size (-w) 42
...5.5.4 Defining assymteric windows (-l and -r) 43

..5.5.5 Defining assymteric windows based on strand (-sw) 43
..5.5.6 Enforcing “strandedness” (-sm) 44

..5.5.7 Reporting the presence of at least one overlapping feature (-u) 44
..5.5.8 Reporting the number of overlapping features (-c) 44

..5.5.9 Reporting the absence of any overlapping features (-v) 44
5.6 CLOSESTBED.. 45

..5.6.1 Usage and option summary 45
..5.6.2 Default behavior 45

...5.6.3 Enforcing “strandedness” (-s) 46
..5.6.4 Controlling how ties for “closest” are broken (-t) 46

5.7 SUBTRACTBED... 47
..5.7.1 Usage and option summary 47

..5.7.2 Default behavior 47
..5.7.3 Requiring a minimal overlap fraction before subtracting (-f) 48

...5.7.4 Enforcing “strandedness” (-s) 48
5.8 MERGEBED .. 49

..5.8.1 Usage and option summary 49
..5.8.2 Default behavior 49

...5.8.3 Enforcing “strandedness” (-s) 50
..5.8.4 Reporting the number of features that were merged (-n) 50

...5.8.5 Controlling how close two features must be in order to merge (-d) 50
..5.8.6 Reporting the names of the features that were merged (-nms) 51

5.9 COVERAGEBED... 52
..5.9.1 Usage and option summary 52

..5.9.2 Default behavior 52
...5.9.4 Calculating coverage by strand (-s) 53

5.10 GENOMECOVERAGEBED... 54
..5.10.1 Usage and option summary 54

..5.10.2 Default behavior 54
..5.10.3 Controlling the histogram’s maximum depth (-max) 55

...5.10.4 Reporting “per-base” genome coverage (-d) 55
5.11 FASTAFROMBED... 56

..5.11.1 Usage and option summary 56
..5.11.2 Default behavior 56

...5.11.3 Using the BED “name” column as a FASTA header. 56
...5.11.4 Creating a tab-delimited output file in lieu of FASTA output. 57

5.12 MASKFASTAFROMBED ... 58
..5.12.1 Usage and option summary 58

..5.12.2 Default behavior 58
...5.12.3 Soft-masking the FASTA file. 58

5.13 SHUFFLEBED.. 60
..5.13.1 Usage and option summary 60

..5.13.2 Default behavior 60
..5.13.3 Requiring that features be shuffled on the same chromosome (-chrom) 61

..5.13.4 Excluding certain genome regions from shuffleBed 61
..5.13.5 Defining a “seed” for the random replacement. 62

3

5.14 SLOPBED.. 63
..5.14.1 Usage and option summary 63

..5.14.2 Default behavior 63
...5.14.3 Resizing features according to strand 64

5.15 SORTBED ... 65
..5.15.1 Usage and option summary 65

..5.15.2 Default behavior 65
...5.15.3 Optional sorting behavior 65

5.16 LINKSBED... 67
..5.16.1 Usage and option summary 67

..5.16.2 Default behavior 67
..5.16.3 Creating HTML links to a local UCSC Browser installation 68

5.17 COMPLEMENTBED.. 69
..5.17.1 Usage and option summary 69

..5.15.2 Default behavior 69

...6. EXAMPLE USAGE. 70
6.1 INTERSECTBED.. 70

...6.1.1 Report the base-pair overlap between sequence alignments and genes. 70
...6.1.2 Report whether each alignment overlaps one or more genes. If not, the alignment is not reported. 70

..6.1.3 Report those alignments that overlap NO genes. Like "grep -v" 70
...6.1.4 Report the number of genes that each alignment overlaps. 70

..6.1.5 Report the entire, original alignment entry for each overlap with a gene. 70
...6.1.6 Report the entire, original gene entry for each overlap with a gene. 70

...6.1.7 Report the entire, original alignment and gene entries for each overlap. 70
...6.1.8 Only report an overlap with a repeat if it spans at least 50% of the exon. 70

6.1.9 Only report an overlap if comprises 50% of the structural variant and 50% of the segmental duplication. Thus, it is reciprocally at
...least a 50% overlap. 70

...6.1.10 Read BED A from stdin. For example, find genes that overlap LINEs but not SINEs. 70
..6.1.11 Retain only single-end BAM alignments that overlap exons. 71

...6.1.12 Retain only single-end BAM alignments that do not overlap simple sequence repeats. 71
6.2 PAIRTOBED ... 71

..6.2.1 Return all structural variants (in BEDPE format) that overlap with genes on either end. 71
...6.2.1 Return all structural variants (in BEDPE format) that overlap with genes on both end. 71

...6.2.3 Retain only paired-end BAM alignments where neither end overlaps simple sequence repeats. 71
...6.2.4 Retain only paired-end BAM alignments where both ends overlap segmental duplications. 71

......................6.2.5 Retain only paired-end BAM alignments where neither or one and only one end overlaps segmental duplications. 71
..6.3 pairToPair 72

..6.3.1 Find all SVs (in BEDPE format) in sample 1 that are also in sample 2. 72
...6.3.2 Find all SVs (in BEDPE format) in sample 1 that are not in sample 2. 72

...6.4 bamToBed 72
..6.4.1 Convert BAM alignments to BED format. 72

...6.4.2 Convert BAM alignments to BED format using the BAM edit distance (NM) as the BED “score”. 72
..6.4.2 Convert BAM alignments to BEDPE format. 72

6.5 WINDOWBED.. 73
..6.5.1 Report all genes that are within 10000 bp upstream or downstream of CNVs. 73

...6.5.2 Report all genes that are within 10000 bp upstream or 5000 bp downstream of CNVs. 73
6.5.3 Report all SNPs that are within 5000 bp upstream or 1000 bp downstream of genes. Define upstream and downstream based on

..strand. 73
6.6 CLOSESTBED.. 73

..6.6.1 Find the closest ALU to each gene. 73
...6.6.2 Find the closest ALU to each gene, choosing the first ALU in the file if there is a tie. 73
..6.6.3 Find the closest ALU to each gene, choosing the last ALU in the file if there is a tie. 73

6.7 SUBTRACTBED... 74
...6.7.1 Remove introns from gene features. Exons will (should) be reported. 74

6.8 MERGEBED .. 74
...6.8.1 Merge overlapping repetitive elements into a single entry. 74

...6.8.2 Merge overlapping repetitive elements into a single entry, returning the number of entries merged. 74

4

...6.8.3 Merge nearby (within 1000 bp) repetitive elements into a single entry. 74
6.9 COVERAGEBED... 74

..6.9.1 Compute the coverage of aligned sequences on 10 kilobase “windows” spanning the genome. 74
6.9.2 Compute the coverage of aligned sequences on 10 kilobase “windows” spanning the genome and created a BEDGRAPH of the

..number of aligned reads in each window for display on the UCSC browser. 75
6.9.3 Compute the coverage of aligned sequences on 10 kilobase “windows” spanning the genome and created a BEDGRAPH of the

..fraction of each window covered by at least one aligned read for display on the UCSC browser. 75
6.10 COMPLEMENTBED.. 75

..6.10.1 Report all intervals in the human genome that are not covered by repetitive elements. 75
6.11 SHUFFLEBED.. 75

...........6.11.1 Randomly place all discovered variants in the genome. However, prevent them from being placed in know genome gaps. 75
6.11.2 Randomly place all discovered variants in the genome. However, prevent them from being placed in know genome gaps and

..require that the variants be randomly placed on the same chromosome. 75

..7. ADVANCED USAGE. 76
7.1 MASK ALL REGIONS IN A GENOME EXCEPT FOR TARGETED CAPTURE REGIONS .. 76
7.2 SCREENING FOR NOVEL SNPS ... 76
7.3 COMPUTING THE COVERAGE OF FEATURES THAT ALIGN ENTIRELY WITHIN AN INTERVAL .. 76
7.4 COMPUTING THE COVERAGE OF BAM ALIGNMENTS ON EXONS ... 76
7.5 COMPUTING COVERAGE SEPARATELY FOR EACH STRAND .. 76
7.6 FIND STRUCTURAL VARIANT CALLS THAT ARE PRIVATE TO ONE SAMPLE ... 77
7.7 EXCLUDE SV DELETIONS THAT APPEAR TO BE ALU INSERTIONS IN THE REFERENCE GENOME .. 77

5

1. Overview

1.1 Background

The development of BEDTools was motivated by a need for fast, flexible tools with which to compare
large sets of genomic features. Answering fundamental research questions with existing tools was either
too slow or required modifications to the way they reported or computed their results. We were aware of
the utilities on the UCSC Genome Browser and Galaxy websites, as well as the elegant tools available
as part of Jim Kent’s monolithic suite of tools (“Kent source”). However, we found that the web-based
tools were too cumbersome when working with large datasets generated by current sequencing
technologies. Similarly, we found that the Kent source command line tools often required a local
installation of the UCSC Genome Browser. These limitations, combined with the fact that we often
wanted an extra option here or there that wasn’t available with existing tools, led us to develop our
own from scratch. The initial version of BEDTools was publicly released in the spring of 2009. The
current version has evolved from our research experiences and those of the scientists using the suite over
the last year.

The BEDTools suite enables one to answer common questions of genomic data in a fast and reliable
manner. The fact that almost all the utilities accept input from “stdin” allows one to “stream / pipe”
several commands together to facilitate more complicated analyses. Also, the tools allow fine control
over how output is reported. Most recently, we have added support for sequence alignments in
BAM (http://samtools.sourceforge.net/) format, as well as for features in GFF and
“blocked” BED format. The tools are quite fast and typically finish in a matter of a few seconds,
even for large datasets.

This manual describes the behavior and available functionality for each BEDTool. Usage examples are
scattered throughout the text, and formal examples are provided in the last two sections (Section 6
and 7).

6

http://samtools.sourceforge.net
http://samtools.sourceforge.net

1.2 Summary of available tools

BEDTools support a wide range of operations for interrogating and manipulating genomic features. We
have also defined a concise paired-end BED format (BEDPE, described in more detail in Section
4.1.2) to facilitate comparisons of discontinuous features (e.g., paired-end sequence reads) to each other
(pairToPair), as well as to genomic features in traditional BED format (pairToBed). This
functionality is crucial for interpreting structural variants detected by paired-end mapping, and for
identifying fusion genes or alternative splicing patterns by RNA-seq. The table below summarizes the
tools available in the suite (tools that support BAM file are indicated).

Utility Description
intersectBed Returns overlapping features between two BED/GFF files.

Supports BAM format as input and output.
pairToBed Returns overlaps between a BEDPE file and a regular BED/GFF file.

Supports BAM format as input and output.
pairToPair Returns overlaps between two BEDPE files.
bamToBed Converts BAM alignments to BED and BEDPE formats.

Supports BAM format as input.
windowBed Returns overlapping features between two BED/GFF files within a “window”.
closestBed Returns the closest feature to each entry in a BED/GFF file.
subtractBed Removes the portion of an interval that is overlapped by another feature.
mergeBed Merges overlapping features into a single feature.
coverageBed Summarizes the depth and breadth of coverage of features in one BED/GFF file

(e.g., aligned reads) relative to another (e.g., user-defined windows).
genomeCoverageBed Histogram or a “per base” report of genome coverage.
fastaFromBed Creates FASTA sequences from BED/GFF intervals.
maskFastaFromBed Masks a FASTA file based upon BED/GFF coordinates.
shuffleBed Permutes the locations of features within a genome.
slopBed Adjusts features by a requested number of base pairs.
sortBed Sorts BED/GFF files in useful ways.
linksBed Creates an HTML links from a BED/GFF file.
complementBed Returns intervals not spanned by features in a BED/GFF file.

7

1.3 Fundamental concepts regarding BEDTools usage.

1.3.1 What are genome features and how are they represented?
Throughout this manual, we will discuss how to use BEDTools to manipulate, compare and ask
questions of genome “features”. Genome features can be functional elements (e.g., genes), genetic
polymorphisms (e.g. SNPs, INDELs, or structural variants), or other annotations that have been
discovered or curated by genome sequencing groups or genome browser groups. In addition, genome
features can be custom annotations that an individual lab or researcher defines (e.g., my novel gene or
variant).

The basic characteristics of a genome feature are the chromosome or scaffold on which the feature
“resides”, the base pair on which the feature starts (i.e. the “start”), the base pair on which feature
ends (i.e. the “end”), the strand on which the feature exists (i.e. “+” or “-“), and the name of the
feature if one is applicable.

The two most widely used formats for representing genome features are the BED (Browser Extensible
Data) and GFF (General Feature Format) formats. BEDTools was originally written to work
exclusively with genome features described using the BED format, but it has been recently
extended to seamlessly work with both BED and GFF files.

Existing annotations for the genomes of many species can be easily downloaded in BED and GFF
format from the UCSC Genome Browser’s “Table Browser” (http://genome.ucsc.edu/cgi-bin/hgTables?
command=start) or from the “Bulk Downloads” page (http://hgdownload.cse.ucsc.edu/downloads.html).
In addition, the Ensemble Genome Browser contains annotations in GFF/GTF format for many species
(http://www.ensembl.org/info/data/ftp/index.html)

Section 4 of this manual describes BED and GFF formats in detail and illustrates how to define your
own annotations.

1.3.2 Overlapping / intersecting features.
Two genome features (henceforth referred to as “features”) are said to overlap or intersect if they share
at least one base in common. In the figure below, Feature A intersects/overlaps Feature B, but it does
not intersect/overlap Feature C.

!

"#$%&'#!(!

"#$%&'#!)!

"#$%&'#!*!

8

http://genome.ucsc.edu/cgi-bin/hgTables?command=start
http://genome.ucsc.edu/cgi-bin/hgTables?command=start
http://genome.ucsc.edu/cgi-bin/hgTables?command=start
http://genome.ucsc.edu/cgi-bin/hgTables?command=start
http://hgdownload.cse.ucsc.edu/downloads.html
http://hgdownload.cse.ucsc.edu/downloads.html
http://www.ensembl.org/info/data/ftp/index.html
http://www.ensembl.org/info/data/ftp/index.html

1.3.3 Comparing features in file “A” and file “B”.
The previous section briefly introduced a fundamental naming convention used in BEDTools.
Specifically, all BEDTools that compare features contained in two distinct files refer to one file as
feature set “A” and the other file as feature set “B”. This is mainly in the interest of brevity, but it also
has its roots in set theory.

As an example, if one wanted to look for SNPs (file A) that overlap with exons (file B), one would use
intersectBed in the following manner:

$ intersectBed –a snps.bed –b exons.bed

1.3.4 BED starts are zero-based and BED ends are one-based.
BEDTools users are sometimes confused by the way the start and end of BED features are represented.
Specifically, BEDTools uses the UCSC Genome Browser’s internal database convention of making the
start position 0-based and the end position 1-based:
(http://genome.ucsc.edu/FAQ/FAQtracks#tracks1)

In other words, BEDTools interprets the “start” column as being 1 basepair higher than what is
represented in the file. For example, the following BED feature represents a single base on chromosome
1; namely, the 1st base.

chr1 0 1 first_base

Why, you might ask? The advantage of storing features this way is that when computing the length of
a feature, one must simply subtract the start from the end. Were the start position 1-based, the
calculation would be (slightly) more complex (i.e. (end-start)+1). Thus, storing BED features this way
reduces the computational burden.

1.3.5 GFF starts and ends are one-based.
In contrast, the GFF format uses 1-based coordinates for both the start and the end positions.
BEDTools is aware of this and adjusts the positions accordingly. In other words, you don’t need to
subtract 1 from the start positions of your GFF features for them to work correctly with BEDTools.

9

http://genome.ucsc.edu/FAQ/FAQtracks#tracks1
http://genome.ucsc.edu/FAQ/FAQtracks#tracks1

1.3.6 File B is loaded into memory.
Whenever a BEDTool compares two files of features, the “B” file is loaded into memory. By contrast,
the “A” file is processed line by line and compared with the features from B. Therefore to minimize
memory usage, one should set the smaller of the two files as the B file.

One salient example is the comparison of aligned sequence reads from a current DNA sequencer to gene
annotations. In this case, the aligned sequence file (in BED format) may have tens of millions of
features (the sequence alignments), while the gene annotation file will have tens of thousands of
features. In this case, it is wise to sets the reads as file A and the genes as file B.

1.3.7 Feature files must be tab-delimited.
This is rather self-explanatory. While it is possible to allow BED files to be space-delimited, we have
decided to require tab delimiters for three reasons:

1. By requiring one delimiter type, the processing time is minimized.
2. Tab-delimited files are more amenable to other UNIX utilities.
3. GFF files can contain spaces within attribute columns. This complicates the use of space-

delimited files as spaces must therefore be treated specially depending on the context.

1.3.8 All BEDTools allow features to be “piped” via standard input.
In an effort to allow one to combine multiple BEDTools and other UNIX utilities into more complicated
“pipelines”, all BEDTools allow features to be passed to them via standard input. Only one feature file
may be passed to a BEDTool via standard input. The convention used by all BEDTools is to set either
file A or file B to “stdin”. For example:

$ cat snps.bed | intersectBed –a stdin –b exons.bed

1.3.9 Most BEDTools write their results to standard output.
To allow one to combine multiple BEDTools and other UNIX utilities into more complicated “pipelines”,
most BEDTools report their output to standard output, rather than to a named file. If one wants to
write the output to a named file, one can use the UNIX “file redirection” symbol “>” to do so.

Writing to standard output (the default):

$ intersectBed –a snps.bed –b exons.bed
chr1 100100 100101 rs233454

10

chr1 200100 200101 rs446788
chr1 300100 300101 rs645678

Writing to a file:

$ intersectBed –a snps.bed –b exons.bed > snps.in.exons.bed
$ cat snps.in.exons.bed
chr1 100100 100101 rs233454
chr1 200100 200101 rs446788
chr1 300100 300101 rs645678

1.3.10 What is a “genome” file?
Some of the BEDTools (e.g., genomeCoverageBed, complementBed, slopBed) need to know the size of
the chromosomes for the organism for which your BED files are based. When using the UCSC Genome
Browser, Ensemble, or Galaxy, you typically indicate which species / genome build you are working.
The way you do this for BEDTools is to create a “genome” file, which simply lists the names of the
chromosomes (or scaffolds, etc.) and their size (in basepairs).

Genome files must be tab-delimited and are structured as follows (this is an example for C. elegans):

chrI 15072421
chrII 15279323
...
chrX 17718854
chrM 13794

BEDTools includes predefined genome files for human and mouse in the /genomes directory included
in the BEDTools distribution.

1.3.11 Paired-end BED files (BEDPE files).
We have defined a new file format (BEDPE) to concisely describe disjoint genome features, such as
structural variations or paired-end sequence alignments. We chose to define a new format because the
existing BED block format (i.e. BED12) does not allow inter-chromosomal feature definitions. Moreover,
the BED12 format feels rather bloated when one want to describe events with only two blocks. See
Section 4.1.2 for more details.

1.3.12 Use “-h” for help with any BEDTool.
Rather straightforward. If you use the “-h” option with any BEDTool, a full menu of example usage
and available options (when applicable) will be reported.

11

1.3.13 BED features must not contain negative positions.
BEDTools will typically reject BED features that contain negative positions. In special cases, however,
BEDPE positions may be set to -1 to indicate that one or more ends of a BEDPE feature is unaligned.

1.3.14 The start position must be <= to the end position.
BEDTools will reject BED features where the start position is greater than the end position.

1.3.15 Headers are allowed in GFF and BED files
BEDTools will ignore headers at the beginning of BED and GFF files. Valid header lines begin with a
“#” symbol, the work “track”, or the word “browser”. For example, the following examples are valid
headers for BED or GFF files:

track name=aligned_read description="Illumina aligned reads”
chr5 100000 500000 read1 50 +
chr5 2380000 2386000 read2 60 -

#This is a fascinating dataset
chr5 100000 500000 read1 50 +
chr5 2380000 2386000 read2 60 -

browser position chr22:1-20000
chr5 100000 500000 read1 50 +
chr5 2380000 2386000 read2 60 -

12

1.4 Implementation and algorithmic approach
BEDTools was implemented in C++ and makes extensive use of data structures and fundamental
algorithms from the Standard Template Library (STL). Many of the core algorithms are based upon the
genome binning algorithm described in the original UCSC Genome Browser paper (Kent et al, 2002).
The tools have been designed to inherit core data structures from central source files, thus allowing
rapid tool development and deployment of improvements and corrections.

1.5 License and Availability
BEDTools is freely available under a GNU Public License (Version 2) at:
http://bedtools.googlecode.com

1.6 Discussion group
A discussion group for reporting bugs, asking questions of the developer and of the user community, as
well as for requesting new features is available at:
http://groups.google.com/group/bedtools-discuss

13

http://bedtools.googlecode.com
http://bedtools.googlecode.com
http://groups.google.com/group/bedtools-discuss
http://groups.google.com/group/bedtools-discuss

2. Installation
BEDTools is intended to run in a “command line” environment on UNIX, LINUX and Apple OS X
operating systems. Installing BEDTools involves downloading the latest source code archive followed by
compiling the source code into binaries on your local system. The following commands will install
BEDTools in a local directory on a *NIX or OS X machine. Note that the “<version>“ refers to the
latest posted version number on http://bedtools.googlecode.com/.

Note: The BEDTools “makefiles” use the GCC compiler. One should edit the Makefiles accordingly if
one wants to use a different compiler.

curl http://bedtools.googlecode.com/files/BEDTools.<version>.tar.gz > BEDTools.tar.gz
tar -zxvf BEDTools.tar.gz
cd BEDTools
make clean
make all
ls bin

At this point, one should copy the binaries in BEDTools/bin/ to either usr/local/bin/ or some
other repository for commonly used UNIX tools in your environment. You will typically require
administrator (e.g. “root” or “sudo”) privileges to copy to usr/local/bin/. If in doubt, contact you
system administrator for help.

3. “Quick start” guide

3.1 Install BEDTools
curl http://bedtools.googlecode.com/files/BEDTools.<version>.tar.gz > BEDTools.tar.gz
tar -zxvf BEDTools.tar.gz
cd BEDTools
make clean
make all
sudo cp bin/* /usr/local/bin/

3.2 Use BEDTools
Below are examples of typical BEDTools usage. Additional usage examples are described in
section 6 of this manual. Using the “-h” option with any BEDTools will report a list of all command
line options.

A. Report the base-pair overlap between the features in two BED files.
$ intersectBed -a reads.bed -b genes.bed

B. Report those entries in A that overlap NO entries in B. Like "grep -v"
$ intersectBed -a reads.bed -b genes.bed –v

14

http://bedtools.googlecode.com/
http://bedtools.googlecode.com/

C. Read BED A from stdin. Useful for stringing together commands. For example, find genes that overlap LINEs
but not SINEs.
$ intersectBed -a genes.bed -b LINES.bed | intersectBed -a stdin -b SINEs.bed –v

D. Find the closest ALU to each gene.
$ closestBed -a genes.bed -b ALUs.bed

E. Merge overlapping repetitive elements into a single entry, returning the number of entries merged.
$ mergeBed -i repeatMasker.bed -n
! ! !
F. Merge nearby repetitive elements into a single entry, so long as they are within 1000 bp of one another.
$ mergeBed -i repeatMasker.bed -d 1000

15

4. General usage information

4.1 Supported file formats

4.1.1 BED format
As described on the UCSC Genome Browser website (see link below), the BED format is a concise and
flexible way to represent genomic features and annotations. The BED format description supports up to
12 columns, but only the first 3 are required for the UCSC browser, the Galaxy browser and for
BEDTools. BEDTools allows one to use the “BED12” format (that is, all 12 fields listed below), but the
last six columns are not used for any comparisons by the BEDTools. In other words, BEDTools will
not perform separate comparisons for each block in a BED12 feature. Instead, it will use the entire
span (start to end) of the BED12 entry to perform any relevant feature comparisons. The last six
columns will be reported in the output of all comparisons.

The file description below is modified from: http://genome.ucsc.edu/FAQ/FAQformat#format1.

1. chrom - The name of the chromosome on which the genome feature exists.
• Any string can be used. For example, “chr1”, “III”, “myChrom”, “contig1112.23”.
• This column is required.

2. start - The zero-based starting position of the feature in the chromosome.
• The first base in a chromosome is numbered 0.
• The start position in each BED feature is therefore interpreted to be 1 greater than the start position

listed in the feature. For example, start=9, end=20 is interpreted to span bases 10 through 20,
inclusive.

• This column is required.
3. end - The one-based ending position of the feature in the chromosome.

• The end position in each BED feature is one-based. See example above.
• This column is required.

4. name - Defines the name of the BED feature.
• Any string can be used. For example, “LINE”, “Exon3”, “HWIEAS_0001:3:1:0:266#0/1”, or

“my_Feature”.
• This column is optional.

5. score – The UCSC definition requires that a BED score range from 0 to 1000, inclusive. However,
BEDTools allows any string to be stored in this field in order to allow greater flexibility in annotation
features. For example, strings allow scientific notation for p-values, mean enrichment values, etc. It
should be noted that this flexibility could prevent such annotations from being correctly displayed on the
UCSC browser.
• Any string can be used. For example, 7.31E-05 (p-value), 0.33456 (mean enrichment value), “up”,

“down”, etc.
• This column is optional.

6. strand - Defines the strand - either '+' or '-'.

16

http://genome.ucsc.edu/FAQ/FAQformat#format1
http://genome.ucsc.edu/FAQ/FAQformat#format1

• This column is optional.
7. thickStart - The starting position at which the feature is drawn thickly.

• Allowed yet ignored by BEDTools.
8. thickEnd - The ending position at which the feature is drawn thickly.

• Allowed yet ignored by BEDTools.
9. itemRgb - An RGB value of the form R,G,B (e.g. 255,0,0).

• Allowed yet ignored by BEDTools.
10. blockCount - The number of blocks (exons) in the BED line.

• Allowed yet ignored by BEDTools.
11. blockSizes - A comma-separated list of the block sizes.

• Allowed yet ignored by BEDTools.
12. blockStarts - A comma-separated list of block starts.

• Allowed yet ignored by BEDTools.

BEDTools requires that all BED input files (and input received from stdin) are tab-delimited. The
following types of BED files are supported by BEDTools:

(A)BED3: A BED file where each feature is described by chrom, start, and end.
For example: chr1! 11873! 14409

(B)BED4: A BED file where each feature is described by chrom, start, end, and name.
For example: chr1! 11873! 14409! uc001aaa.3

(C)BED5: A BED file where each feature is described by chrom, start, end, name, and score.
For example: chr1! 11873! 14409! uc001aaa.3! 0

(D)BED6: A BED file where each feature is described by chrom, start, end, name, score, and strand.
For example: chr1! 11873! 14409! uc001aaa.3! 0! +

(E) BED12: A BED file where each feature is described by all twelve columns listed above.
For example: chr1! 11873! 14409! uc001aaa.3! 0! +! 11873
! 11873! 0! 3! 354,109,1189,! 0,739,1347,

17

4.1.2 BEDPE format
We have defined a new file format (BEDPE) in order to concisely describe disjoint genome features,
such as structural variations or paired-end sequence alignments. We chose to define a new format
because the existing “blocked” BED format (a.k.a. BED12) does not allow inter-chromosomal feature
definitions. In addition, BED12 only has one strand field, which is insufficient for paired-end sequence
alignments, especially when studying structural variation.

The BEDPE format is described below. The description is modified from: http://genome.ucsc.edu/
FAQ/FAQformat#format1.

1. chrom1 - The name of the chromosome on which the first end of the feature exists.
• Any string can be used. For example, “chr1”, “III”, “myChrom”, “contig1112.23”.
• This column is required.
• Use “.” for unknown.

2. start1 - The zero-based starting position of the first end of the feature on chrom1.
• The first base in a chromosome is numbered 0.
• As with BED format, the start position in each BEDPE feature is therefore interpreted to be 1 greater

than the start position listed in the feature. This column is required.
• Use -1 for unknown.

3. end1 - The one-based ending position of the first end of the feature on chrom1.
• The end position in each BEDPE feature is one-based.
• This column is required.
• Use -1 for unknown.

4. chrom2 - The name of the chromosome on which the second end of the feature exists.
• Any string can be used. For example, “chr1”, “III”, “myChrom”, “contig1112.23”.
• This column is required.
• Use “.” for unknown.

5. start2 - The zero-based starting position of the second end of the feature on chrom2.
• The first base in a chromosome is numbered 0.
• As with BED format, the start position in each BEDPE feature is therefore interpreted to be 1 greater

than the start position listed in the feature. This column is required.
• Use -1 for unknown.

6. end2 - The one-based ending position of the second end of the feature on chrom2.
• The end position in each BEDPE feature is one-based.
• This column is required.
• Use -1 for unknown.

7. name - Defines the name of the BEDPE feature.
• Any string can be used. For example, “LINE”, “Exon3”, “HWIEAS_0001:3:1:0:266#0/1”, or

“my_Feature”.
• This column is optional.

8. score – The UCSC definition requires that a BED score range from 0 to 1000, inclusive. However,
BEDTools allows any string to be stored in this field in order to allow greater flexibility in annotation
features. For example, strings allow scientific notation for p-values, mean enrichment values, etc. It should
be noted that this flexibility could prevent such annotations from being correctly displayed on the UCSC
browser.

18

http://genome.ucsc.edu/FAQ/FAQformat#format1
http://genome.ucsc.edu/FAQ/FAQformat#format1
http://genome.ucsc.edu/FAQ/FAQformat#format1
http://genome.ucsc.edu/FAQ/FAQformat#format1

• Any string can be used. For example, 7.31E-05 (p-value), 0.33456 (mean enrichment value), “up”,
“down”, etc.

• This column is optional.
9. strand1 - Defines the strand for the first end of the feature. Either '+' or '-'.

• This column is optional.
• Use “.” for unknown.

10. strand2 - Defines the strand for the second end of the feature. Either '+' or '-'.
• This column is optional.
• Use “.” for unknown.

11. Any number of additional, user-defined fields. - BEDTools allows one to add as many additional
fields to the normal, 10-column BEDPE format as necessary. These columns are merely “passed through”
pairToBed and pairToPair and are not part of any analysis. One would use these additional columns
to add extra information (e.g., edit distance for each end of an alignment, or “deletion”, “inversion”, etc.)
to each BEDPE feature.
• These additional columns are optional.

Entries from an typical BEDPE file:
chr1 100 200 chr5 5000 5100 bedpe_example1 30 + -
chr9 1000 5000 chr9 3000 3800 bedpe_example2 100 - -

Entries from a BEDPE file with two custom fields added to each record:
chr1 10 20 chr5 50 60 a1 30 + - 0 1
chr9 30 40 chr9 80 90 a2 100 - - 2 1

19

4.1.3 GFF format
The GFF format is described on the Sanger Institute’s website (http://www.sanger.ac.uk/resources/
software/gff/spec.html). The GFF description below is modified from the definition at this URL. All
nine columns in the GFF format description are required by BEDTools.

1. seqname - The name of the sequence (e.g. chromosome) on which the feature exists.
• Any string can be used. For example, “chr1”, “III”, “myChrom”, “contig1112.23”.
• This column is required.

2. source - The source of this feature. This field will normally be used to indicate the program making the
prediction, or if it comes from public database annotation, or is experimentally verified, etc.
• This column is required.

3. feature – The feature type name. Equivalent to BED’s name field.
• Any string can be used. For example, “exon”, etc.
• This column is required.

4. start - The one-based starting position of feature on seqname.
• This column is required.
• BEDTools accounts for the fact the GFF uses a one-based position and BED uses a zero-based start

position.
5. end - The one-based ending position of feature on seqname.

• This column is required.
6. score – A score assigned to the GFF feature. Like BED format, BEDTools allows any string to be stored

in this field in order to allow greater flexibility in annotation features. We note that this differs from the
GFF definition in the interest of flexibility.
• This column is required.

7. strand - Defines the strand. Use '+', '-' or ‘.’
• This column is required.

8. frame – The frame of the coding sequence. Use ‘0’, ‘1’, ‘2’, or ‘.’.
• This column is required.

9. attribute – Taken from http://www.sanger.ac.uk/resources/software/gff/spec.html: From version 2
onwards, the attribute field must have an tag value structure following the syntax used within objects in
a .ace file, flattened onto one line by semicolon separators. Tags must be standard identifiers ([A-Za-z][A-
Za-z0-9_]*). Free text values must be quoted with double quotes. Note: all non-printing characters in
such free text value strings (e.g. newlines, tabs, control characters, etc) must be explicitly represented by
their C (UNIX) style backslash-escaped representation (e.g. newlines as '\n', tabs as '\t'). As in ACEDB,
multiple values can follow a specific tag. The aim is to establish consistent use of particular tags,
corresponding to an underlying implied ACEDB model if you want to think that way (but acedb is not
required).
• This column is required.

An entry from an example GFF file :
seq1 BLASTX similarity 101 235 87.1 + 0 Target "HBA_HUMAN" 11 55 ;
E_value 0.0003 dJ102G20 GD_mRNA coding_exon 7105 7201 . - 2 Sequence
"dJ102G20.C1.1"

20

http://www.sanger.ac.uk/resources/software/gff/spec.html
http://www.sanger.ac.uk/resources/software/gff/spec.html
http://www.sanger.ac.uk/resources/software/gff/spec.html
http://www.sanger.ac.uk/resources/software/gff/spec.html
http://www.sanger.ac.uk/resources/software/gff/spec.html
http://www.sanger.ac.uk/resources/software/gff/spec.html

4.1.4 Genome files
Some of the BEDTools (e.g., genomeCoverageBed, complementBed, slopBed) need to know the size of
the chromosomes for the organism for which your BED files are based. When using the UCSC Genome
Browser, Ensemble, or Galaxy, you typically indicate which which species/genome build you are
working. The way you do this for BEDTools is to create a “genome” file, which simply lists the names of
the chromosomes (or scaffolds, etc.) and their size (in basepairs).

Genome files must be tab-delimited and are structured as follows (this is an example for C. elegans):
chrI 15072421
chrII 15279323
...
chrX 17718854
chrM 13794

BEDTools includes pre-defined genome files for human and mouse in the /genomes directory included
in the BEDTools distribution.

4.1.5 SAM/BAM format
The SAM / BAM format is a powerful and widely-used format for storing sequence alignment data (see
http://samtools.sourceforge.net/ for more details). Currently, two BEDTools (intersectBed and
pairToBed) support BAM input and output. These tools allow one to quickly:

(A)Find BAM alignments that overlap (or not) with BED annotation and report them in BED
format.

(B)Create a new BAM file of BAM alignments that overlap (or not) with BED annotations. This
serves as a powerful way to refine alignment datasets based on biological interest.

The details of how these tools work with BAM files are addressed in Section 5 of this manual. In
additions, bamToBed is a convenient utility that will convert BAM files to both BED and BEDPE
formats for uses with all other BEDTools.

21

http://samtools.sourceforge.net/
http://samtools.sourceforge.net/

5. The BEDTools suite

This section covers the functionality and default / optional usage for each of the available BEDTools.
Example “figures” are provided in some cases in an effort to convey the purpose of the tool. The
behavior of each available parameter is discussed for each tool in abstract terms. More concrete usage
examples are provided in Section 6.

5.1 intersectBed
By far, the most common question asked of two sets of genomic features is whether or not any of the
features in the two sets “overlap” with one another. This is known as feature intersection. intersectBed
allows one to screen for overlaps between two sets of genomic features. Moreover, it allows one to have
fine control as to how the intersections are reported. intersectBed works with both BED and BAM
files as input.

5.1.1 Usage and option summary

Usage: $ intersectBed [OPTIONS] [-a <BED> || -abam <BAM>] -b <BED>

Option Description
-a BED file A. Each feature in A is compared to B in search of overlaps. Use “stdin” if passing A with a

UNIX pipe.
-b BED file B. Use “stdin” if passing B with a UNIX pipe.
-abam BAM file A. Each BAM alignment in A is compared to B in search of overlaps. Use “stdin” if passing

A with a UNIX pipe: For example:
samtools view –b <BAM> | intersectBed –abam stdin –b genes.bed

-bed When using BAM input (-abam), write output as BED. The default is to write output in BAM when
using -abam. For example:
intersectBed –abam reads.bam –b genes.bed –bed

-wa Write the original entry in A for each overlap.
-wb Write the original entry in B for each overlap. Useful for knowing what A overlaps. Restricted by -f.
-u Write original A entry once if any overlaps found in B. In other words, just report the fact at least

one overlap was found in B. Restricted by -f.
-c For each entry in A, report the number of hits in B while restricting to -f. Reports 0 for A entries

that have no overlap with B. Restricted by -f.
-v Only report those entries in A that have no overlap in B. Restricted by -f.
-f Minimum overlap required as a fraction of A. Default is 1E-9 (i.e. 1bp).
-r Require that the fraction of overlap be reciprocal for A and B. In other words, if -f is 0.90 and -r is

used, this requires that B overlap at least 90% of A and that A also overlaps at least 90% of B.
-s Force “strandedness”. That is, only report hits in B that overlap A on the same strand. By default,

overlaps are reported without respect to strand.

22

5.1.2 Default behavior
By default, if an overlap is found, intersectBed reports the shared interval between the two
overlapping features.

Chromosome ==

BED/BAM A =================== =============

BED File B ========

Result ========

For example:
$ cat A.bed
chr1 100 200
chr1 1000 2000

$ cat B.bed
chr1 150 250

$ intersectBed –a A.bed –b B.bed
chr1 150 200

5.1.3 Reporting the original A feature (-wa)
Instead, one can force intersectBed to report the original “A” feature when an overlap is found. As
shown below, the entire “A” feature is reported, not just the portion that overlaps with the “B” feature.

Chromosome ==

BED File A =================== =============

BED File B ========

Result ===================

For example (compare with example from default behavior):
$ cat A.bed
chr1 100 200
chr1 1000 2000

23

$ cat B.bed
chr1 150 250

$ intersectBed –a A.bed –b B.bed -wa
chr1 100 200

5.1.4 Reporting the original B feature (-wb)
Similarly, one can force intersectBed to report the original “B” feature when an overlap is found. If
just –wb is used, the overlapping portion of A will be reported followed by the original “B”. If both –wa
and –wb are used, the originals of both “A” and “B” will be reported.

For example (-wb alone):
$ cat A.bed
chr1 100 200
chr1 1000 2000

$ cat B.bed
chr1 150 250

$ intersectBed –a A.bed –b B.bed -wb
chr1 150 200 chr1 150 250

Now -wa and -wb:
$ cat A.bed
chr1 100 200
chr1 1000 2000

$ cat B.bed
chr1 150 250

$ intersectBed –a A.bed –b B.bed –wa -wb
chr1 100 200 chr1 150 250

5.1.5 Reporting the presence of at least one overlapping feature (-u)
Frequently a feature in “A” will overlap with multiple features in “B”. By default, intersectBed will
report each overlap as a separate output line. However, one may want to simply know that there is at
least one overlap (or none). When one uses the –u option, “A” features that overlap with one or more
“B” features are reported once. Those that overlap with no “B” features are not reported at all.

For example:
$ cat A.bed

24

chr1 100 200
chr1 1000 2000

$ cat B.bed
chr1 101 201
chr1 120 220

$ intersectBed –a A.bed –b B.bed –u
chr1 100 200

5.1.6 Reporting the number of overlapping features (-c)
The –c option reports a column after each “A” feature indicating the number (0 or more) of overlapping
features found in “B”. Therefore, each feature in A is reported once.

For example:
$ cat A.bed
chr1 100 200
chr1 1000 2000

$ cat B.bed
chr1 101 201
chr1 120 220

$ intersectBed –a A.bed –b B.bed –c
chr1 100 200 2
chr1 1000 2000 0

5.1.7 Reporting the absence of any overlapping features (-v)
There will likely be cases where you’d like to know which “A” features do not overlap with any of the
“B” features. Perhaps you’d like to know which SNPs don’t overlap with any gene annotations. The -v
(an homage to “grep –v”) option will only report those “A” features that have no overlaps in “B”.

For example:
$ cat A.bed
chr1 100 200
chr1 1000 2000

$ cat B.bed
chr1 101 201
chr1 120 220

$ intersectBed –a A.bed –b B.bed –v
chr1 1000 2000

25

5.1.8 Requiring a minimal overlap fraction (-f)
By default, intersectBed will report an overlap between A and B so long as there is at least one base
pair is overlapping. Yet sometimes you may want to restrict reported overlaps between A and B to cases
where the feature in B overlaps at least X% (e.g. 50%) of the A feature. The –f option does exactly
this.

For example (note that the second B entry is not reported):
$ cat A.bed
chr1 100 200

$ cat B.bed
chr1 130 201
chr1 180 220

$ intersectBed –a A.bed –b B.bed –f 0.50 –wa -wb
chr1 100 200 chr1 130 201

5.1.9 Requiring reciprocal minimal overlap fraction (-r, combined with -f)
Similarly, you may want to require that a minimal fraction of both the A and the B features is
overlapped. For example, if feature A is 1kb and feature B is 1Mb, you might not want to report the
overlap as feature A can overlap at most 1% of feature B. If one set –f to say, 0.02, and one also
enable the –r (reciprocal overlap fraction required), this overlap would not be reported.

For example (note that the second B entry is not reported):
$ cat A.bed
chr1 100 200

$ cat B.bed
chr1 130 201
chr1 130 200000

$ intersectBed –a A.bed –b B.bed –f 0.50 –r –wa -wb
chr1 100 200 chr1 130 201

26

5.1.10 Enforcing “strandedness” (-s)
By default, intersectBed will report overlaps between features even if the features are on opposite
strands. However, if strand information is present in both BED files and the “-s” option is used, overlaps
will only be reported when features are on the same strand.

For example (note that the second B entry is not reported):
$ cat A.bed
chr1 100 200 a1 100 +

$ cat B.bed
chr1 130 201 b1 100 -
chr1 130 201 b2 100 +

$ intersectBed –a A.bed –b B.bed –wa –wb -s
chr1 100 200 a1 100 + chr1 130 201 b2 100 +

5.1.11 Default behavior when using BAM input (-abam)
When comparing alignments in BAM format (-abam) to features in BED format (-b), intersectBed
will, by default, write the output in BAM format. That is, each alignment in the BAM file that meets
the user’s criteria will be written (to standard output) in BAM format. This serves as a mechanism to
create subsets of BAM alignments are of biological interest, etc. Note that only the mate in the BAM
alignment is compared to the BED file. Thus, if only one end of a paired-end sequence overlaps with a
feature in B, then that end will be written to the BAM output. By contrast, the other mate for the
pair will not be written. One should use pairToBed (Section 5.2) if one wants each BAM alignment
for a pair to be written to BAM output.

For example:

$ intersectBed –abam reads.unsorted.bam –b simreps.bed | samtools view - | head -3
BERTHA_0001:3:1:15:1362#0 99 chr4 9236904 0 50M = 9242033 5 1 7 9
 AGACGTTAACTTTACACACCTCTGCCAAGGTCCTCATCCTTGTATTGAAG W c T U] b \ g c e g X g f c b f c c b d d g g V Y P W W _
\c`dcdabdfW^a^gggfgd XT:A:R NM:i:0 SM:i:0 AM:i:0 X0:i:19 X1:i:2 XM:i:0 XO:i:0 XG:i:0 MD:Z:50
BERTHA _0001:3:1:16:994#0 83 chr6 114221672 37 25S6M1I11M7S =
 114216196 -5493 G A A A G G C C A G A G T A T A G A A T A A A C A C A A C A A T G T C C A A G G T A C A C T G T T A
 gffeaaddddggggggedgcgeggdegggggffcgggggggegdfggfgf XT:A:M NM:i:3 SM:i:37 AM:i:37 XM:i:2 X O : i :
1 XG:i:1 MD:Z:6A6T3
BERTHA _0001:3:1:16:594#0 147 chr8 43835330 0 50M =
 43830893 -4487 CTTTGGGAGGGCTTTGTAGCCTATCTGGAAAAAGGAAATATCTTCCCATG U
\e^bgeTdg_Kgcg`ggeggg_gggggggggddgdggVg\gWdfgfgff XT:A:R NM:i:2 SM:i:0 AM:i:0 X0:i:10 X1:i:7 X M : i :
2 XO:i:0 XG:i:0 MD:Z:1A2T45

27

5.1.12 Output BED format when using BAM input (-bed)
When comparing alignments in BAM format (-abam) to features in BED format (-b), intersectBed
will optionally write the output in BED format. That is, each alignment in the BAM file is converted
to a 6 column BED feature and if overlaps are found (or not) based on the user’s criteria, the BAM
alignment will be reported in BED format. The BED “name” field is comprised of the RNAME field in
the BAM alignment. If mate information is available, the mate (e.g., “/1” or “/2”) field will be
appended to the name. The “score” field is the mapping quality score from the BAM alignment.

For example:
$ intersectBed –abam reads.unsorted.bam –b simreps.bed -bed | head -20
chr4 9236903 9236953 BERTHA_0001:3:1:15:1362#0/1 0 +
chr6 114221671 114221721 BERTHA_0001:3:1:16:994#0/1 37 -
chr8 43835329 43835379 BERTHA_0001:3:1:16:594#0/2 0 -
chr4 49110668 49110718 BERTHA_0001:3:1:31:487#0/1 23 +
chr19 27732052 27732102 BERTHA_0001:3:1:32:890#0/2 46 +
chr19 27732012 27732062 BERTHA_0001:3:1:45:1135#0/1 37 +
chr10 117494252 117494302 BERTHA_0001:3:1:68:627#0/1 37 -
chr19 27731966 27732016 BERTHA_0001:3:1:83:931#0/2 9 +
chr8 48660075 48660125 BERTHA_0001:3:1:86:608#0/2 37 -
chr9 34986400 34986450 BERTHA_0001:3:1:113:183#0/2 37 -
chr10 42372771 42372821 BERTHA_0001:3:1:128:1932#0/1 3 -
chr19 27731954 27732004 BERTHA_0001:3:1:130:1402#0/2 0 +
chr10 42357337 42357387 BERTHA_0001:3:1:137:868#0/2 9 +
chr1 159720631 159720681 BERTHA_0001:3:1:147:380#0/2 37 -
chrX 58230155 58230205 BERTHA_0001:3:1:151:656#0/2 37 -
chr5 142612746 142612796 BERTHA_0001:3:1:152:1893#0/1 37 -
chr9 71795659 71795709 BERTHA_0001:3:1:177:387#0/1 37 +
chr1 106240854 106240904 BERTHA_0001:3:1:194:928#0/1 37 -
chr4 74128456 74128506 BERTHA_0001:3:1:221:724#0/1 37 -
chr8 42606164 42606214 BERTHA_0001:3:1:244:962#0/1 37 +

28

5.2 pairToBed
pairToBed compares each end of a BEDPE feature or a paired-end BAM alignment to a BED file in
search of overlaps.

5.2.1 Usage and option summary

Usage: $ pairToBed [OPTIONS] [-a <BEDPE> || -abam <BAM>] -b <BED>

Option Description
-a BEDPE file A. Each feature in A is compared to B in search of overlaps. Use “stdin” if passing A

with a UNIX pipe. Output will be in BEDPE format.
-b BED file B. Use “stdin” if passing B with a UNIX pipe.
-abam BAM file A. Each end of each BAM alignment in A is compared to B in search of overlaps. Use

“stdin” if passing A with a UNIX pipe: For example:
samtools view –b <BAM> | pairToBed –abam stdin –b genes.bed | samtools view -

-bedpe When using BAM input (-abam), write output as BEDPE. The default is to write output in BAM
when using -abam. For example:
pairToBed –abam reads.bam –b genes.bed –bedpe

-f Minimum overlap required as a fraction of A. Default is 1E-9 (i.e. 1bp).
-s Force “strandedness”. That is, only report hits in B that overlap A on the same strand. By default,

overlaps are reported without respect to strand.
-type Approach to reporting overlaps between BEDPE and BED.

either Report overlaps if either end of A overlaps B.

 - Default.

neither Report A if neither end of A overlaps B.
xor Report overlaps if one and only one end of A overlaps B.

both Report overlaps if both ends of A overlap B.
notboth Report overlaps if neither end or one and only one end of A overlap B.

ispan Report overlaps between [end1, start2] of A and B.

 - Note: If chrom1 <> chrom2, entry is ignored.

ospan Report overlaps between [start1, end2] of A and B.
 - Note: If chrom1 <> chrom2, entry is ignored.

notispan Report A if ispan of A doesn't overlap B.

 - Note: If chrom1 <> chrom2, entry is ignored.

notospan Report A if ospan of A doesn't overlap B.
 - Note: If chrom1 <> chrom2, entry is ignored.

29

5.2.2 Default behavior
By default, a BEDPE / BAM feature will be reported if either end overlaps a feature in the BED file.
In the example below, the left end of the pair overlaps B yet the right end does not. Thus, BEDPE/
BAM A is reported since the default is to report A if either end overlaps B.

Default: Report A if either end overlaps B.

Chromosome ==

BEDPE/BAM A =====.................................=====

BED File B ======== ======

Result =====.................................=====

5.2.3 Optional overlap requirements (-type)
Using then -type option, pairToBed provides several other overlap requirements for controlling how
overlaps between BEDPE/BAM A and BED B are reported. The examples below illustrate how each
option behaves.

-type both: Report A only if both ends overlap B.

Chromosome ==

BEDPE/BAM A =====.................................=====

BED File B ======== ======

Result

BEDPE/BAM A =====.................................=====

BED File B ======== ======

Result =====.................................=====

30

-type neither: Report A only if neither end overlaps B.

Chromosome ==

BEDPE/BAM A =====.................................=====

BED File B ======== ======

Result

BEDPE/BAM A =====.................................=====

BED File B ==== ======

Result =====.................................=====

-type xor: Report A only if one and only one end overlaps B.

Chromosome ==

BEDPE/BAM A =====.................................=====

BED File B ======== ======

Result =====.................................=====

BEDPE/BAM A =====.................................=====

BED File B ==== ======

Result

31

-type notboth: Report A only if neither end or one and only one end overlaps B. Thus “notboth”
includes what would be reported by “neither” and by “xor”.

Chromosome ==

BEDPE/BAM A =====.................................=====

BED File B ======== ======

Result =====.................................=====

BEDPE/BAM A =====.................................=====

BED File B === ======

Result =====.................................=====

BEDPE/BAM A =====.................................=====

BED File B ==== ======

Result

-type ispan: Report A if it’s “inner span” overlaps B. Applicable only to intra-chromosomal features.

Chromosome ==

 Inner span |-------------------------------|

BEDPE/BAM A =====.................................=====

BED File B ============

Result =====.................................=====

BEDPE/BAM A =====.................................=====

BED File B ====

Result

32

-type ospan: Report A if it’s “outer span” overlaps B. Applicable only to intra-chromosomal features.

Chromosome ==

 Outer span |---|

BEDPE/BAM A =====.................................=====

BED File B ============

Result =====.................................=====

BEDPE/BAM A =====.................................=====

BED File B ====

Result

-type notispan: Report A only if it’s “inner span” does not overlap B. Applicable only to intra-
chromosomal features.

Chromosome ==

 Inner span |-------------------------------|

BEDPE/BAM A =====.................................=====

BED File B ============

Result

BEDPE/BAM A =====.................................=====

BED File B ====

Result =====.................................=====

33

-type notospan: Report A if it’s “outer span” overlaps B. Applicable only to intra-chromosomal
features.

Chromosome ==

 Outer span |---|

BEDPE/BAM A =====.................................=====

BED File B ============

Result

BEDPE/BAM A =====.................................=====

BED File B ====

Result =====.................................=====

5.2.4 Requiring a minimum overlap fraction (-f)
By default, pairToBed will report an overlap between A and B so long as there is at least one base
pair is overlapping on either end. Yet sometimes you may want to restrict reported overlaps between A
and B to cases where the feature in B overlaps at least X% (e.g. 50%) of A. The –f option does exactly
this. The -f option may also be combined with the -type option for additional control. For example,
combining -f 0.50 with -type both requires that both ends of A have at least 50% overlap with a
feature in B.

For example, report A only at least 50% of one of the two ends is overlapped by B.

$ pairToBed -a A.bedpe -b B.bed -f 0.5

Chromosome ==

BEDPE/BAM A =====.................................=====

BED File B == ======

Result

34

BEDPE/BAM A =====.................................=====

BED File B ==== ======

Result =====.................................=====

5.2.5 Enforcing “strandedness” (-s)
By default, pairToBed will report overlaps between features even if the features are on opposing
strands. However, if strand information is present in both files and the “-s” option is used, overlaps will
only be reported when features are on the same strand.

For example, report A only at least 50% of one of the two ends is overlapped by B.

$ pairToBed -a A.bedpe -b B.bed -s

Chromosome ==

BEDPE/BAM A >>>>>.................................<<<<<

BED File B << >>>>>

Result

BEDPE/BAM A >>>>>.................................<<<<<

BED File B >> >>>>>

Result >>>>>.................................<<<<<

5.2.6 Default is to write BAM output when using BAM input (-abam)
When comparing paired alignments in BAM format (-abam) to features in BED format (-b),
pairToBed will , by default, write the output in BAM format. That is, each alignment in the BAM
file that meets the user’s criteria will be written (to standard output) in BAM format. This serves as a
mechanism to create subsets of BAM alignments are of biological interest, etc. Note that both
alignments for each aligned pair will be written to the BAM output.

35

For example:
$ pairToBed –abam pairedReads.bam –b simreps.bed | samtools view - | head -4
JOBU_0001:3:1:4:1060#0 99 chr10 42387928 29 50M = 42393091 5 2 1 3
 A A A A A C G G A A T T A T C G A A T G G A A T C G A A G A G A A T C T T C G A A C G G A C C C G A
 dcgggggfbgfgdgggggggfdfgggcggggfcggcggggggagfgbggc XT:A:R NM:i:5 SM:i:0 AM:i:0 X0:i:3 X 1 : i :
3 XM:i:5 XO:i:0 XG:i:0 MD:Z:0T0C33A5T4T3
JOBU_0001:3:1:4:1060#0 147 chr10 42393091 0 50M = 42387928 - 5 2 1 3
 AAATGGAATCGAATGGAATCAACATCAAATGGAATCAAATGGAATCATTG K g d c g g d e c d g
\d`ggfcgcggffcgggc^cgfgccgggfc^gcdgg\bg XT:A:R NM:i:2 SM:i:0 AM:i:0 X0:i:3 X1:i:13 XM:i:2 X O : i :
0 XG:i:0 MD:Z:21T14G13
JOBU_0001:3:1:8:446#0 99 chr10 42388091 9 50M = 42392738 4 6 9 7
 GAATCGACTGGAATCATCATCGGATGGAAATGAATGGAATAATCATCGAA f _ O f f `] I e Y f f ` f f e d d c f e f c P ` c _ W \ \ R _]
_BBBBBBBBBBBBBBBB XT:A:U NM:i:4 SM:i:0 AM:i:0 X0:i:1 X1:i:3 XM:i:4 XO:i:0 XG:i:0 M D : Z :
7A22C9C2T6
JOBU_0001:3:1:8:446#0 147 chr10 42392738 9 50M = 42388091 - 4 6 9 7
 TTATCGAATGCAATCGAATGGAATTATCGAATGCAATCGAATAGAATCAT df^ffec_JW[`MWceRec``fee`dcecfeeZae`c]
f^cNeecfccf^ XT:A:R NM:i:1 SM:i:0 AM:i:0 X0:i:2 X1:i:2 XM:i:1 XO:i:0 XG:i:0 MD:Z:38A11

5.2.7 Output BEDPE format when using BAM input (-bedpe)
When comparing paired alignments in BAM format (-abam) to features in BED format (-b),
pairToBed will optionally write the output in BEDPE format. That is, each alignment in the BAM
file is converted to a 10 column BEDPE feature and if overlaps are found (or not) based on the user’s
criteria, the BAM alignment will be reported in BEDPE format. The BEDPE “name” field is comprised
of the RNAME field in the BAM alignment. The “score” field is the mapping quality score from the
BAM alignment.

For example:
$ pairToBed –abam pairedReads.bam –b simreps.bed -bedpe | head -5
chr10 42387927 42387977 chr10 42393090 42393140
 JOBU_0001:3:1:4:1060#0 29 + -
chr10 42388090 42388140 chr10 42392737 42392787
 JOBU_0001:3:1:8:446#0 9 + -
chr10 42390552 42390602 chr10 42396045 42396095
 JOBU_0001:3:1:10:1865#0 9 + -
chrX 139153741 139153791 chrX 139159018 139159068
 JOBU_0001:3:1:14:225#0 37 + -
chr4 9236903 9236953 chr4 9242032 9242082
 JOBU_0001:3:1:15:1362#0 0 + -

36

5.3 pairToPair
pairToPair compares two BEDPE files in search of overlaps where each end of a BEDPE feature in A
overlaps with the ends of a feature in B. For example, using pairToPair, one could screen for the exact
same discordant paired-end alignment in two files. This could suggest (among other things) that the
discordant pair suggests the same structural variation in each file/sample.

5.3.1 Usage and option summary

Usage: $ pairToPair [OPTIONS] -a <BEDPE> -b <BEDPE>

Option Description
-a BEDPE file A. Each feature in A is compared to B in search of overlaps. Use “stdin” if passing A

with a UNIX pipe.
-b BEDPE file B. Use “stdin” if passing B with a UNIX pipe.
-f Minimum overlap required as a fraction of A. Default is 1E-9 (i.e. 1bp).
-is Force “strandedness”. That is, only report hits in B that overlap A on the same strand. By default,

overlaps are reported without respect to strand.
-type Approach to reporting overlaps between BEDPE and BED.

neither Report A if neither end of A overlaps B.

both Report overlaps if both ends of A overlap B.

 Default behavior.

5.3.2 Default behavior
By default, a BEDPE feature from A will be reported if both ends overlap a feature in the BEDPE B
file. If strand information is present for the two BEDPE files, it will be further required that the
overlaps on each end be on the same strand. This way, an otherwise overlapping (in terms of genomic
locations) F/R alignment will not be matched with a R/R alignment.

Default: Report A if both ends overlaps B.

Chromosome ==

BEDPE A =====.................................=====

BEDPE B ========.............................======

Result =====.................................=====

37

Default when strand information is present in both BEDPE files: Report A if both ends overlaps B on
the same strands.

Chromosome ==

BEDPE A >>>>>.................................>>>>>

BEDPE B <<<<<.............................>>>>>

Result

BEDPE A >>>>>.................................>>>>>

BEDPE B >>>>>.............................>>>>>

Result >>>>>.................................>>>>>

5.3.3 Optional overlap requirements (-type neither)
Using then -type neither, pairToPair will only report A if neither end overlaps with a BEDPE
feature in B.

-type neither: Report A only if neither end overlaps B.

Chromosome ==

BEDPE/BAM A =====.................................=====

BED File B ========......................................======

Result

BEDPE/BAM A =====.................................=====

BED File B ====..======

Result =====.................................=====

38

5.4 bamToBed
bamToBed is a general purpose tool that will convert sequence alignments in BAM format to either
BED or BEDPE format. This enables one to convert BAM files for use with all of the other BEDTools.

5.4.1 Usage and option summary

Usage: $ bamToBed [OPTIONS] -i <BAM>

Option Description
-bedpe Write BAM alignments in BEDPE format. Only one alignment from paired-end reads will be

reported. Specifically, it each mate is aligned to the same chromosome, the BAM alignment reported
will be the one where the BAM insert size is greater than zero. Alignments with an insert size of 0 are
ignored. When the mate alignments are inter-chromosomal, the alignment where mate 1 is the
primary alignment will be reported. Lastly, only pairs where both ends are mapped (i.e., not “orphans”
or unmapped pairs) will be reported.
By default, this is disabled and the output will be reported in BED format.

BAM files may be piped to bamToBed by specifying “–i stdin”. See example below.
-ed Use the “edit distance” tag (NM) for the BED score field. Not available when writing BEDPE format.

By default, the score field will be the mapping quality.

By default, each alignment in the BAM file is converted to a 6 column BED. The BED “name” field is
comprised of the RNAME field in the BAM alignment. If mate information is available, the mate (e.g.,
“/1” or “/2”) field will be appended to the name. The “score” field is the mapping quality score from the
BAM alignment, unless the –ed option is used.

Examples:
$ bamToBed -i reads.bam | head -5
chr7 118970079 118970129 TUPAC_0001:3:1:0:1452#0/1 37 -
chr7 118965072 118965122 TUPAC_0001:3:1:0:1452#0/2 37 +
chr11 46769934 46769984 TUPAC_0001:3:1:0:1472#0/1 37 -

$ bamToBed -i reads.bam –ed | head -5
chr7 118970079 118970129 TUPAC_0001:3:1:0:1452#0/1 1 -
chr7 118965072 118965122 TUPAC_0001:3:1:0:1452#0/2 3 +
chr11 46769934 46769984 TUPAC_0001:3:1:0:1472#0/1 1 -

$ bamToBed -i reads.bam –bedpe | head -3
chr7 118965072 118965122 chr7 118970079 118970129
 TUPAC_0001:3:1:0:1452#0 37 + -
chr11 46765606 46765656 chr11 46769934 46769984
 TUPAC_0001:3:1:0:1472#0 37 + -
chr20 54704674 54704724 chr20 54708987 54709037
 TUPAC_0001:3:1:1:1833#0 37 + -

39

One can easily use samtools and bamToBed together as part of a UNIX pipe. In this example, we will
only convert properly-paired (BAM flag == 0x2) reads to BED format.
samtools view -bf 0x2 reads.bam | bamToBed -i stdin | head
chr7 118970079 118970129 TUPAC_0001:3:1:0:1452#0/1 37 -
chr7 118965072 118965122 TUPAC_0001:3:1:0:1452#0/2 37 +
chr11 46769934 46769984 TUPAC_0001:3:1:0:1472#0/1 37 -
chr11 46765606 46765656 TUPAC_0001:3:1:0:1472#0/2 37 +
chr20 54704674 54704724 TUPAC_0001:3:1:1:1833#0/1 37 +
chr20 54708987 54709037 TUPAC_0001:3:1:1:1833#0/2 37 -
chrX 9380413 9380463 TUPAC_0001:3:1:1:285#0/1 0 -
chrX 9375861 9375911 TUPAC_0001:3:1:1:285#0/2 0 +
chrX 131756978 131757028 TUPAC_0001:3:1:2:523#0/1 37 +
chrX 131761790 131761840 TUPAC_0001:3:1:2:523#0/2 37 -

40

5.5 windowBed
Similar to intersectBed, windowBed searches for overlapping features in A and B. However,
windowBed adds a specified number (1000, by default) of base pairs upstream and downstream of
each feature in A. In effect, this allows features in B that are “near” features in A to be detected.

5.5.1 Usage and option summary

Usage: $ windowBed [OPTIONS] -a <BED> -b <BED>

Option Description
-w Base pairs added upstream and downstream of each entry in A when searching for overlaps in B.

Default is 1000 bp.
-l Base pairs added upstream (left of) of each entry in A when searching for overlaps in B.

Allows one to create assymetrical “windows”. Default is 1000bp.
-r Base pairs added downstream (right of) of each entry in A when searching for overlaps in B.

Allows one to create assymetrical “windows”. Default is 1000bp.
-sw Define -l and -r based on strand. For example if used, -l 500 for a negative-stranded feature will add

500 bp downstream.
By default, this is disabled.

-sm Only report hits in B that overlap A on the same strand.
By default, overlaps are reported without respect to strand.

-u Write original A entry once if any overlaps found in B. In other words, just report the fact at least one
overlap was found in B.

-c For each entry in A, report the number of hits in B while restricting to -f. Reports 0 for A entries that
have no overlap with B.

41

5.5.2 Default behavior
By default, windowBed adds 1000 bp upstream and downstream of each A feature and searches for
features in B that overlap this “window”. If an overlap is found in B, both the original A feature and the
original B feature are reported. For example, in the figure below, feature B1 would be found, but B2
would not.

Chromosome ==

 “window” = 10

BED File A <----------=============---------->

BED File B ======== ======

Result ========

For example:
$ cat A.bed
chr1 100 200

$ cat B.bed
chr1 500 1000
chr1 1300 2000

$ windowBed –a A.bed –b B.bed
chr1 100 200 chr1 500 1000

5.5.3 Defining a custom window size (-w)
Instead of using the default window size of 1000bp, one can define a custom, symmetric window around
each feature in A using the –w option. One should specify the window size in base pairs. For example,
a window of 5kb should be defined as –w 5000.

For example (note that in contrast to the default behavior, the second B entry is reported):
$ cat A.bed
chr1 100 200

$ cat B.bed
chr1 500 1000
chr1 1300 2000

$ windowBed –a A.bed –b B.bed –w 5000
chr1 100 200 chr1 500 1000
chr1 100 200 chr1 1300 2000

42

5.5.4 Defining assymteric windows (-l and -r)
One can also define asymmetric windows where a differing number of bases are added upstream and
downstream of each feature using the –l (upstream) and –r (downstream) options.

For example (note the difference between –l 200 and –l 300):
$ cat A.bed
chr1 1000 2000

$ cat B.bed
chr1 500 800
chr1 10000 20000

$ windowBed –a A.bed –b B.bed –l 200 –r 20000
chr1 100 200 chr1 10000 20000

$ windowBed –a A.bed –b B.bed –l 300 –r 20000
chr1 100 200 chr1 500 800
chr1 100 200 chr1 10000 20000

5.5.5 Defining assymteric windows based on strand (-sw)
Especially when dealing with gene annotations or RNA-seq experiments, you may want to define
asymmetric windows based on “strand”. For example, you may want to screen for overlaps that occur
within 5000 bp upstream of a gene (e.g. a promoter region) while screening only 1000 bp downstream of
the gene. By enabling the –sw (“stranded” windows) option, the windows are added upstream or
downstream according to strand. For example, imagine one specifies –l 5000 –r 1000 as well as the –
sw option. In this case, forward stranded (“+”) features will screen 5000 bp to the left (that is, lower
genomic coordinates) and 1000 bp to the right (that is, higher genomic coordinates). By contrast,
reverse stranded (“-”) features will screen 5000 bp to the right (that is, higher genomic coordinates) and
1000 bp to the left (that is, lower genomic coordinates).

For example (note the difference between –l 200 and –l 300):
$ cat A.bed
chr1 10000 20000 A.forward 1 +
chr1 10000 20000 A.reverse 1 -

$ cat B.bed
chr1 1000 8000 B1
chr1 24000 32000 B2

$ windowBed –a A.bed –b B.bed –l 5000 –r 1000 -sw
chr1 10000 20000 A.forward 1 + chr1 1000 8000 B1
chr1 10000 20000 A.reverse 1 - chr1 24000 32000 B2

43

5.5.6 Enforcing “strandedness” (-sm)
This option behaves the same as the –s option for intersectBed while scanning for overlaps within the
“window” surrounding A. See the discussion in the intersectBed section for details.

5.5.7 Reporting the presence of at least one overlapping feature (-u)
This option behaves the same as for intersectBed while scanning for overlaps within the “window”
surrounding A. See the discussion in the intersectBed section for details.

5.5.8 Reporting the number of overlapping features (-c)
This option behaves the same as for intersectBed while scanning for overlaps within the “window”
surrounding A. See the discussion in the intersectBed section for details.

5.5.9 Reporting the absence of any overlapping features (-v)
This option behaves the same as for intersectBed while scanning for overlaps within the “window”
surrounding A. See the discussion in the intersectBed section for details.

44

5.6 closestBed
Similar to intersectBed, closestBed searches for overlapping features in A and B. In the event that
no feature in B overlaps the current feature in A, closestBed will report the closest (that is, least
genomic distance from the start or end of A) feature in B. For example, one might want to find which
is the closest gene to a significant GWAS polymorphism. Note that closestBed will report an
overlapping feature as the closest---that is, it does not restrict to closest non-overlapping feature.

5.6.1 Usage and option summary

Usage: $ closestBed [OPTIONS] -a <BED> -b <BED>

Option Description
-s Force strandedness. That is, find the closest feature in B overlaps A on the same strand.

By default, this is disabled.
-t How ties for closest feature should be handled. This occurs when two features in B have exactly the

same overlap with a feature in A. By default, all such features in B are reported.
Here are the other choices controlling how ties are handled:
all Report all ties (default).

first Report the first tie that occurred in the B file.

last Report the last tie that occurred in the B file.

5.6.2 Default behavior
closestBed first searches for features in B that overlap a feature in A. If overlaps are found, the feature
in B that overlaps the highest fraction of A is reported. If no overlaps are found, closestBed looks for
the feature in B that is closest (that is, least genomic distance to the start or end of A) to A. For
example, in the figure below, feature B1 would be reported as the closest feature to A1.

Chromosome ==

BED File A =============

BED File B ======== ======

Result ======

45

For example:
$ cat A.bed
chr1 100 200

$ cat B.bed
chr1 500 1000
chr1 1300 2000

$ windowBed –a A.bed –b B.bed
chr1 100 200 chr1 500 1000

5.6.3 Enforcing “strandedness” (-s)
This option behaves the same as the –s option for intersectBed while scanning for the closest
(overlapping or not) feature in B. See the discussion in the intersectBed section for details.

5.6.4 Controlling how ties for “closest” are broken (-t)
When there are two or more features in B that overlap the same fraction of A, closestBed will, by
default, report both features in B. Imagine feature A is a SNP and file B contains genes. It can often
occur that two gene annotations (e.g. opposite strands) in B will overlap the SNP. As mentioned, the
default behavior is to report both such genes in B. However, the –t option allows one to optionally
choose the just first or last feature (in terms of where it occurred in the input file, not chromosome
position) that occurred in B.

For example (note the difference between –l 200 and –l 300):
$ cat A.bed
chr1 100 101 rs1234

$ cat B.bed
chr1 0 1000 geneA 100 +
chr1 0 1000 geneB 100 -

$ closestBed –a A.bed –b B.bed
chr1 100 101 rs1234 chr1 0 1000 geneA 100 +
chr1 100 101 rs1234 chr1 0 1000 geneB 100 -

$ closestBed –a A.bed –b B.bed –t all
chr1 100 101 rs1234 chr1 0 1000 geneA 100 +
chr1 100 101 rs1234 chr1 0 1000 geneB 100 -

$ closestBed –a A.bed –b B.bed –t first
chr1 100 101 rs1234 chr1 0 1000 geneA 100 +

$ closestBed –a A.bed –b B.bed –t last
chr1 100 101 rs1234 chr1 0 1000 geneB 100 -

46

5.7 subtractBed
subtractBed searches for features in B that overlap A. If an overlapping feature is found in B, the
overlapping portion is removed from A and the remaining portion of A is reported. If a feature in B
overlaps all of a feature in A, the A feature will not be reported.

5.7.1 Usage and option summary

Usage: $ subtractBed [OPTIONS] -a <BED> -b <BED>

Option Description
-f Minimum overlap required as a fraction of A. Default is 1E-9 (i.e. 1bp).
-s Force strandedness. That is, find the closest feature in B overlaps A on the same strand.

By default, this is disabled.

5.7.2 Default behavior

Chromosome ==

BED File A ============= ======

BED File B ======== ===========

Result =========

For example:
$ cat A.bed
chr1 100 200
chr1 10 20

$ cat B.bed
chr1 0 30
chr1 180 300

$ subtractBed –a A.bed –b B.bed
chr1 100 180

47

5.7.3 Requiring a minimal overlap fraction before subtracting (-f)
This option behaves the same as the –f option for intersectBed. In this case, subtractBed will only
subtract an overlap with B if it covers at least the fraction of A defined by –f. If an overlap is found,
but it does not meet the overlap fraction, the original A feature is reported without subtraction.

For example:
$ cat A.bed
chr1 100 200

$ cat B.bed
chr1 180 300

$ subtractBed –a A.bed –b B.bed –f 0.10
chr1 100 180

$ subtractBed –a A.bed –b B.bed –f 0.80
chr1 100 200

5.7.4 Enforcing “strandedness” (-s)
This option behaves the same as the –s option for intersectBed while scanning for features in B that
should be subtracted from A. See the discussion in the intersectBed section for details.

48

5.8 mergeBed
mergeBed combines overlapping or “book-ended” (that is, one base pair away) features in a BED file
into a single feature which spans all of the combined features.

5.8.1 Usage and option summary

Usage: $ mergeBed [OPTIONS] -i <BED>

Option Description
-s Force strandedness. That is, only merge features that are the same strand.

By default, this is disabled.
-n Report the number of BED entries that were merged.

1 is reported if no merging occurred.
-d Maximum distance between features allowed for features to be merged.

Default is 0. That is, overlapping and/or book-ended features are merged.
-nms Report the names of the merged features separated by semicolons.

5.8.2 Default behavior

Chromosome ==

BED File ============= =============== ======================
 ========

Result =============================== ======================

For example:
$ cat A.bed
chr1 100 200
chr1 180 250
chr1 250 500
chr1 501 1000

$ mergeBed –i A.bed
chr1 100 500
chr1 501 1000

49

5.8.3 Enforcing “strandedness” (-s)
This option behaves the same as the –s option for intersectBed while scanning for features that should
be merged. Only features on the same strand will be merged. See the discussion in the intersectBed
section for details.

5.8.4 Reporting the number of features that were merged (-n)
The –n option will report the number of features that were combined from the original file in order to
make the newly merged feature. If a feature in the original file was not merged with any other features,
a “1” is reported.

For example:
$ cat A.bed
chr1 100 200
chr1 180 250
chr1 250 500
chr1 501 1000

$ mergeBed –i A.bed -n
chr1 100 500 3
chr1 501 1000 1

5.8.5 Controlling how close two features must be in order to merge (-d)
By default, only overlapping or book-ended features are combined into a new feature. However, one can
force mergeBed to combine more distant features with the –d option. For example, were one to set –d to
1000, any features that overlap or are within 1000 base pairs of one another will be combined.

For example:
$ cat A.bed
chr1 100 200
chr1 501 1000

$ mergeBed –i A.bed
chr1 100 200
chr1 501 1000

$ mergeBed –i A.bed –d 1000
chr1 100 200 1000

50

5.8.6 Reporting the names of the features that were merged (-nms)
Occasionally, one might like to know that names of the features that were merged into a new feature.
The –nms option will add an extra column to the mergeBed output which lists (separated by
semicolons) the names of the merged features.

For example:
$ cat A.bed
chr1 100 200 A1
chr1 150 300 A2
chr1 250 500 A3

$ mergeBed –i A.bed -nms
chr1 100 500 A1;A2;A3

51

5.9 coverageBed
coverageBed computes both the depth and breadth of coverage of features in file A across the features
in file B. For example, coverageBed can compute the coverage of sequence alignments (file A) across 1
kilobase (arbitrary) windows (file B) tiling a genome of interest. One advantage that coverageBed
offers is that it not only counts the number of features that overlap an interval in file B, it also
computes the fraction of bases in B interval that were overlapped by one or more features. Thus,
coverageBed also computes the breadth of coverage for each interval in B.

5.9.1 Usage and option summary

Usage: $ coverageBed [OPTIONS] -a <BED> -b <BED>

Option Description
-s Force strandedness. That is, only features in A are only counted towards coverage in B if they are the

same strand.
By default, this is disabled and coverage is counted without respect to strand.

5.9.2 Default behavior

After each interval in B, coverageBed will report:

1) The number of features in A that overlapped (by at least one base pair) the B interval.
2) The number of bases in B that had non-zero coverage from features in A.
3) The length of the entry in B.
4) The fraction of bases in B that had non-zero coverage from features in A.

Below are the number of features in A (N=...) overlapping B and fraction of bases in B with coverage.

Chromosome ==

BED File B =============== ================ ====== =============

BED File A ==== ==== == ========= === == ====
 ======== ===== ===== ==

Result [N=3, 10/15] [N=1, 2/16] [N=1,6/6] [N=5, 11/12]

For example:
$ cat A.bed
chr1 10 20
chr1 20 30
chr1 30 40

52

chr1 100 200

$ cat B.bed
chr1 0 100
chr1 100 200
chr2 0 100

$ coverageBed –a A.bed –b B.bed
chr1 0 100 3 30 100 0.3000000
chr1 100 200 1 100 100 1.0000000
chr2 0 100 0 0 100 0.0000000

5.9.4 Calculating coverage by strand (-s)
Use the “-s” option if one wants to only count coverage if features in A are on the same strand as the
feature / window in B. This is especially useful for RNA-seq experiments.

For example (note the difference in coverage with and without -s:

$ cat A.bed
chr1 10 20 a1 1 -
chr1 20 30 a2 1 -
chr1 30 40 a3 1 -
chr1 100 200 a4 1 +

$ cat B.bed
chr1 0 100 b1 1 +
chr1 100 200 b2 1 -
chr2 0 100 b3 1 +

$ coverageBed –a A.bed –b B.bed
chr1 0 100 b1 1 + 3 30 100 0.3000000
chr1 100 200 b2 1 - 1 100 100 1.0000000
chr2 0 100 b3 1 + 0 0 100 0.0000000

$ coverageBed –a A.bed –b B.bed -s
chr1 0 100 b1 1 + 0 0 100 0.0000000
chr1 100 200 b2 1 - 0 0 100 0.0000000
chr2 0 100 b3 1 + 0 0 100 0.0000000

53

5.10 genomeCoverageBed
genomeCoverageBed computes a histogram of feature coverage (e.g., aligned sequences) for a given
genome. Optionally, by using the –d option, it will report the depth of coverage at each base on each
chromosome in the genome file (-g).

5.10.1 Usage and option summary

Usage: $ genomeCoverageBed [OPTIONS] -i <BED> -g <GENOME>

NOTE: genomeCoverageBed requires that the input BED file be sorted by
chromosome. A simple sort –k1,1 will suffice.

Option Description
-d Report the depth at each genome position.

Default behavior is to report a histogram.
-max Combine all positions with a depth >= max into a single bin in the histogram.

5.10.2 Default behavior
By default, genomeCoverageBed will compute a histogram of coverage for the genome file provided.
The default output format is as follows:

1. chromosome (or entire genome)
2. depth of coverage from features in input file
3. number of bases on chromosome (or genome) with depth equal to column 2.
4. size of chromosome (or entire genome) in base pairs
5. fraction of bases on chromosome (or entire genome) with depth equal to column 2.

For example:

$ cat A.bed
chr1 10 20
chr1 20 30
chr2 0 500

$ cat my.genome
chr1 1000
chr2 500

$ genomeCoverageBed –i A.bed –g my.genome
chr1 0 980 1000 0.98
chr1 1 20 1000 0.02
chr2 1 500 500 1
genome 0 980 1500 0.653333
genome 1 520 1500 0.346667

54

5.10.3 Controlling the histogram’s maximum depth (-max)
Using the –max option, genomeCoverageBed will “lump” all positions in the genome having feature
coverage greather than or equal to max into the max histogram bin. For example, if one sets –max
equal to 50, the max depth reported in the output will be 50 and all positions with a depth >= 50 will
be represented in bin 50.

5.10.4 Reporting “per-base” genome coverage (-d)
Using the –d option, genomeCoverageBed will compute the depth of feature coverage for each base
on each chromosome in genome file provided.

The “per-base” output format is as follows:
1. chromosome
2. chromosome position
3. depth (number) of features overlapping this chromosome position.

For example:
$ cat A.bed
chr1 10 20
chr1 20 30
chr2 0 500

$ cat my.genome
chr1 1000
chr2 500

$ genomeCoverageBed –i A.bed –g my.genome –d | head -15 | tail –n 10
chr1 6 0
chr1 7 0
chr1 8 0
chr1 9 0
chr1 10 0
chr1 11 1
chr1 12 1
chr1 13 1
chr1 14 1
chr1 15 1

55

5.11 fastaFromBed
fastaFromBed extracts sequences from a FASTA file for each of the intervals defined in a BED file.
The headers in the input FASTA file must exactly match the chromosome column in the BED file.

5.11.1 Usage and option summary

Usage: $fastaFromBed [OPTIONS] -fi <input FASTA> -bed <BED> -fo <output FASTA>

Option Description
-names Use the “name” column in the BED file for the FASTA headers in the output FASTA file.
-tab Report extract sequences in a tab-delimited format instead of in FASTA format.

5.11.2 Default behavior
fastaFromBed will extract the sequence defined by the coordinates in a BED interval and create a
new FASTA entry in the output file for each extracted sequence. By default, the FASTA header for each
extracted sequence will be formatted as follows: “<chrom>:<start>-<end>”.

For example:

$ cat test.fa
>chr1
AAAAAAAACCCCCCCCCCCCCGCTACTGGGGGGGGGGGGGGGGGG

$ cat test.bed
chr1 5 10

$ fastaFromBed -fi test.fa -bed test.bed -fo test.fa.out

$ cat test.fa.out
>chr1:5-10
AAACC

5.11.3 Using the BED “name” column as a FASTA header.
Using the –name option, one can set the FASTA header for each extracted sequence to be the “name”
columns from the BED feature.

For example:
$ cat test.fa
>chr1
AAAAAAAACCCCCCCCCCCCCGCTACTGGGGGGGGGGGGGGGGGG

$ cat test.bed
chr1 5 10 myseq

56

$ fastaFromBed -fi test.fa -bed test.bed -fo test.fa.out -name
$ cat test.fa.out
>myseq
AAACC

5.11.4 Creating a tab-delimited output file in lieu of FASTA output.
Using the –tab option, the -fo output file will be tab-delimited instead of in FASTA format.

For example:
$ cat test.fa
>chr1
AAAAAAAACCCCCCCCCCCCCGCTACTGGGGGGGGGGGGGGGGGG

$ cat test.bed
chr1 5 10 myseq

$ fastaFromBed -fi test.fa -bed test.bed -fo test.fa.out.tab -name -tab
$ cat test.fa.out
myseq AAACC

57

5.12 maskFastaFromBed
maskFastaFromBed masks sequences in a FASTA file based on intervals defined in a BED file. The
headers in the input FASTA file must exactly match the chromosome column in the BED file. This may
be useful fro creating your own masked genome file based on custom annotations or for masking all but
your target regions when aligning sequence data from a targeted capture experiment.

5.12.1 Usage and option summary

Usage: $maskFastaFromBed [OPTIONS] -fi <input FASTA> -bed <BED> -fo <output FASTA>

NOTE: The input and output FASTA files must be different.

Option Description
-soft Soft-mask (that is, convert to lower-case bases) the FASTA sequence.

By default, hard-masking (that is, conversion to Ns) is performed.

5.12.2 Default behavior
maskFastaFromBed will mask a FASTA file based on the intervals in a BED file. The newly masked
FASTA file is written to the output FASTA file.

For example:
$ cat test.fa
>chr1
AAAAAAAACCCCCCCCCCCCCGCTACTGGGGGGGGGGGGGGGGGG

$ cat test.bed
chr1 5 10

$ maskFastaFromBed -fi test.fa -bed test.bed -fo test.fa.out

$ cat test.fa.out
>chr1
AAAAANNNNNCCCCCCCCCCGCTACTGGGGGGGGGGGGGGGGGG

5.12.3 Soft-masking the FASTA file.
Using the –soft option, one can optionally “soft-mask” the FASTA file.

For example:

$ cat test.fa
>chr1
AAAAAAAACCCCCCCCCCCCCGCTACTGGGGGGGGGGGGGGGGGG

58

$ cat test.bed
chr1 5 10

$ maskFastaFromBed -fi test.fa -bed test.bed -fo test.fa.out -soft

$ cat test.fa.out
>chr1
AAAAAaaaccCCCCCCCCCCGCTACTGGGGGGGGGGGGGGGGGG

59

5.13 shuffleBed
shuffleBed will randomly permute the genomic locations of a BED file among a genome defined in a
genome file. One can also provide an “exclusions” BED file that lists regions where you do not want the
permuted BED features to be placed. For example, one might want to prevent features from being
placed in known genome gaps. shuffleBed is useful as a null basis against which to test the significance
of associations of one feature with another.

5.13.1 Usage and option summary

Usage: $ shuffleBed [OPTIONS] -i <BED> -g <GENOME>

Option Description
-excl A BED file of coordinates in which features from –i should not be placed (e.g., genome gaps).
-chrom Keep features in -i on the same chromosome. Solely permute their location on the chromosome.

By default, both the chromosome and position are randomly chosen.
-seed Supply an integer seed for the shuffling. This will allow feature shuffling experiments to be recreated

exactly as the seed for the pseudo-random number generation will be constant.
By default, the seed is chosen automatically.

5.13.2 Default behavior
By default, shuffleBed will reposition each feature in the input BED file on a random chromosome at a
random position. The size and strand of each feature are preserved.

For example:
$ cat A.bed
chr1 0 100 a1 1 +
chr1 0 1000 a2 2 -

$ cat my.genome
chr1 10000
chr2 8000
chr3 5000
chr4 2000

$ shuffleBed –i A.bed –g my.genome
chr4 1498 1598 a1 1 +
chr3 2156 3156 a2 2 -

60

5.13.3 Requiring that features be shuffled on the same chromosome (-chrom)
The “-chrom” option behaves the same as the default behavior except that features are randomly
placed on the same chromosome as defined in the BED file.

For example:
$ cat A.bed
chr1 0 100 a1 1 +
chr1 0 1000 a2 2 -

$ cat my.genome
chr1 10000
chr2 8000
chr3 5000
chr4 2000

$ shuffleBed –i A.bed –g my.genome –chrom
chr1 9560 9660 a1 1 +
chr1 7258 8258 a2 2 -

5.13.4 Excluding certain genome regions from shuffleBed
One may want to prevent BED features from being placed in certain regions of the genome. For
example, one may want to exclude genome gaps from permutation experiment. The “-excl” option
defines a BED file of regions that should be excluded. shuffleBed will attempt to permute the
locations of all features while adhering to the exclusion rules. However it will stop looking for an
appropriate location if it cannot find a valid spot for a feature after 1,000,000 tries.

For example (note that the exclude file excludes all but 100 base pairs of the chromosome):
$ cat A.bed
chr1 0 100 a1 1 +
chr1 0 1000 a2 2 -

$ cat my.genome
chr1 10000

$ cat exclude.bed
chr1 100 10000

$ shuffleBed –i A.bed –g my.genome –excl exclude.bed
chr1 0 100 a1 1 +
Error, line 2: tried 1000000 potential loci for entry, but could not avoid excluded
regions. Ignoring entry and moving on.

For example (now the exclusion file only excludes the first 100 bases of the chromosome):
$ cat A.bed
chr1 0 100 a1 1 +

61

chr1 0 1000 a2 2 -

$ cat my.genome
chr1 10000

$ cat exclude.bed
chr1 0 100

$ shuffleBed –i A.bed –g my.genome –excl exclude.bed
chr1 147 247 a1 1 +
chr1 2441 3441 a2 2 -

5.13.5 Defining a “seed” for the random replacement.
shuffleBed uses a pseudo-random number generator to permute the locations of BED features.
Therefore, each run should produce a different result. This can be problematic if one wants to exactly
recreate an experiment. By using the “-seed” option, one can supply a custom integer seed for
shuffleBed. In turn, each execution of shuffleBed with the same seed and input files should produce
identical results.

For example (note that the exclude file below excludes all but 100 base pairs of the chromosome):
$ cat A.bed
chr1 0 100 a1 1 +
chr1 0 1000 a2 2 -

$ cat my.genome
chr1 10000

$ shuffleBed –i A.bed –g my.genome -seed 927442958
chr1 6177 6277 a1 1 +
chr1 8119 9119 a2 2 -

$ shuffleBed –i A.bed –g my.genome -seed 927442958
chr1 6177 6277 a1 1 +
chr1 8119 9119 a2 2 -

. . .

$ shuffleBed –i A.bed –g my.genome -seed 927442958
chr1 6177 6277 a1 1 +
chr1 8119 9119 a2 2 -

62

5.14 slopBed
slopBed will increase the size of each feature in a BED file be a user-defined number of bases. While
something like this could be done with an “awk ‘{OFS=”\t” print $1,$2-<slop>,$3+<slop>}’”,
slopBed will restrict the resizing to the size of the chromosome (i.e. no start < 0 and no end >
chromosome size).

5.14.1 Usage and option summary

Usage: $ slopBed [OPTIONS] -i <BED> -g <GENOME> [-b or (-l and -r)]

Option Description
-b Increase the BED entry by the same number base pairs in each direction.

Integer.
-l The number of base pairs to subtract from the start coordinate.

Integer.
-r The number of base pairs to add to the end coordinate.

Integer.
-s Define -l and -r based on strand. For example. if used, -l 500 for a negative-stranded feature, it will

add 500 bp to the end coordinate.

5.14.2 Default behavior
By default, slopBed will either add a fixed number of bases in each direction (-b) or an asymmetric
number of bases in each direction (-l and –r).

For example:

$ cat A.bed
chr1 5 100
chr1 800 980

$ cat my.genome
chr1 1000

$ slopBed –i A.bed –g my.genome –b 5
chr1 0 105
chr1 795 985

$ slopBed –i A.bed –g my.genome –l 2 –r 3
chr1 3 103
chr1 798 983

63

However, if the requested number of bases exceeds the boundaries of the chromosome, slopBed will
“clip” the feature accordingly.
$ cat A.bed
chr1 5 100
chr1 800 980

$ cat my.genome
chr1 1000

$ slopBed –i A.bed –g my.genome –b 5000
chr1 0 1000
chr1 0 1000

5.14.3 Resizing features according to strand
slopBed will optionally increase the size of a feature based on strand.

 For example:
$ cat A.bed
chr1 100 200 a1 1 +
chr1 100 200 a2 2 -

$ cat my.genome
chr1 1000

$ slopBed –i A.bed –g my.genome –l 50 –r 80 –s
chr1 50 280 a1 1 +
chr1 20 250 a2 2 -

64

5.15 sortBed
sortBed sorts a BED file by chromosome and other criteria.

5.15.1 Usage and option summary

Usage: $ sortBed [OPTIONS] -i <BED>

Option Description
-sizeA Sort by feature size in ascending order.
-sizeD Sort by feature size in descending order.
-chrThenSizeA Sort by chromosome, then by feature size (asc).
-chrThenSizeD Sort by chromosome, then by feature size (desc).
-chrThenScoreA Sort by chromosome, then by score (asc).
-chrThenScoreD Sort by chromosome, then by score (desc).

5.15.2 Default behavior
By default, sortBed sorts a BED file by chromosome and then by start position in ascending order.

For example:

$ cat A.bed
chr1 800 1000
chr1 80 180
chr1 1 10
chr1 750 10000

$ sortBed –i A.bed
chr1 1 10
chr1 80 180
chr1 750 10000
chr1 800 1000

5.15.3 Optional sorting behavior
sortBed will also sorts a BED file by chromosome and then by other criteria.

For example, to sort by chromosome and then by feature size (in descending order):
$ cat A.bed
chr1 800 1000
chr1 80 180
chr1 1 10
chr1 750 10000

$ sortBed –i A.bed -sizeD

65

chr1 750 10000
chr1 800 1000
chr1 80 180
chr1 1 10

Disclaimer: it should be noted that sortBed is merely a convenience utility, as the UNIX sort utility
will sort BED files more quickly while using less memory. For example, UNIX sort will sort a BED file
by chromosome then by start position in the following manner:

$ sort -k 1,1 -k2,2 -n a.bed
chr1 1 10
chr1 80 180
chr1 750 10000
chr1 800 1000

	

66

5.16 linksBed
Creates an HTML file with links to an instance of the UCSC Genome Browser for all features /
intervals in a BED file. This is useful for cases when one wants to manually inspect through a large set
of annotations or features.

5.16.1 Usage and option summary

Usage: $ linksBed [OPTIONS] -i <BED> > <HTML file>

Option Description
-base The “basename” for the UCSC browser.

Default: http://genome.ucsc.edu
-org The organism (e.g. mouse, human).

Default: human
-db The genome build.

Default: hg18

5.16.2 Default behavior
By default, linksBed creates links to the public UCSC Genome Browser.

For example:
$ head genes.bed
chr21 9928613 10012791 uc002yip.1 0 -
chr21 9928613 10012791 uc002yiq.1 0 -
chr21 9928613 10012791 uc002yir.1 0 -
chr21 9928613 10012791 uc010gkv.1 0 -
chr21 9928613 10061300 uc002yis.1 0 -
chr21 10042683 10120796 uc002yit.1 0 -
chr21 10042683 10120808 uc002yiu.1 0 -
chr21 10079666 10120808 uc002yiv.1 0 -
chr21 10080031 10081687 uc002yiw.1 0 -
chr21 10081660 10120796 uc002yix.2 0 -

$ linksBed –i genes.bed > genes.html

When genes.html is opened in a web browser, one should see something like the following, where each
link on the page is built from the features in genes.bed:

67

5.16.3 Creating HTML links to a local UCSC Browser installation
Optionally, linksBed will create links to a local copy of the UCSC Genome Browser.

For example:

$ head -3 genes.bed
chr21 9928613 10012791 uc002yip.1 0 -
chr21 9928613 10012791 uc002yiq.1 0 -

$ linksBed –i genes.bed –base http://mirror.uni.edu > genes.html

One can point the links to the appropriate organism and genome build as well:

$ head -3 genes.bed
chr21 9928613 10012791 uc002yip.1 0 -
chr21 9928613 10012791 uc002yiq.1 0 -

$ linksBed –i genes.bed –base http://mirror.uni.edu -org mouse –db mm9 > genes.html

68

http://mirror.uni.edu
http://mirror.uni.edu
http://mirror.uni.edu
http://mirror.uni.edu

5.17 complementBed
complementBed returns the intervals in a genome that are not by the features in a BED file. An
example usage of this tool would be to return the intervals of the genome that are not annotated as a
repeat.

5.17.1 Usage and option summary

Usage: $ complementBed [OPTIONS] -i <BED> -g <GENOME>

No additional options.

5.15.2 Default behavior

Chromosome ==

BED File ============= =============== ==================

Result === === ===== =======

For example:
$ cat A.bed
chr1 100 200
chr1 400 500
chr1 500 800

$ cat my.genome
chr1 1000

$ complementBed –i A.bed –g my.genome
chr1 0 100
chr1 200 400
chr1 800 1000

69

6. Example usage.

Below are several examples of basic BEDTools usage. Example BED files are provided in the
/data directory of the BEDTools distribution.

6.1 intersectBed

6.1.1 Report the base-pair overlap between sequence alignments and genes.
$ intersectBed -a reads.bed -b genes.bed

6.1.2 Report whether each alignment overlaps one or more genes. If not, the alignment
is not reported.

$ intersectBed -a reads.bed -b genes.bed -u

6.1.3 Report those alignments that overlap NO genes. Like "grep -v"
$ intersectBed -a reads.bed -b genes.bed -v

6.1.4 Report the number of genes that each alignment overlaps.
$ intersectBed -a reads.bed -b genes.bed -c

6.1.5 Report the entire, original alignment entry for each overlap with a gene.
$ intersectBed -a reads.bed -b genes.bed -wa

6.1.6 Report the entire, original gene entry for each overlap with a gene.
$ intersectBed -a reads.bed -b genes.bed –wb

6.1.7 Report the entire, original alignment and gene entries for each overlap.
$ intersectBed -a reads.bed -b genes.bed –wa -wb

6.1.8 Only report an overlap with a repeat if it spans at least 50% of the exon.
$ intersectBed -a exons.bed -b repeatMasker.bed –f 0.50

6.1.9 Only report an overlap if comprises 50% of the structural variant and 50% of the
segmental duplication. Thus, it is reciprocally at least a 50% overlap.

$ intersectBed -a SV.bed -b segmentalDups.bed –f 0.50 -r

6.1.10 Read BED A from stdin. For example, find genes that overlap LINEs but not
SINEs.

$ intersectBed -a genes.bed -b LINES.bed | intersectBed -a stdin -b SINEs.bed -v

70

6.1.11 Retain only single-end BAM alignments that overlap exons.
$ intersectBed -abam reads.bam -b exons.bed > reads.touchingExons.bam

6.1.12 Retain only single-end BAM alignments that do not overlap simple sequence
repeats.

$ intersectBed -abam reads.bam -b SSRs.bed -v > reads.noSSRs.bam

6.2 pairToBed

6.2.1 Return all structural variants (in BEDPE format) that overlap with genes on either
end.

$ pairToBed -a sv.bedpe -b genes > sv.genes

6.2.1 Return all structural variants (in BEDPE format) that overlap with genes on both
end.

$ pairToBed -a sv.bedpe -b genes -type both > sv.genes

6.2.3 Retain only paired-end BAM alignments where neither end overlaps simple
sequence repeats.

$ pairToBed -abam reads.bam -b SSRs.bed -type neither > reads.noSSRs.bam

6.2.4 Retain only paired-end BAM alignments where both ends overlap segmental
duplications.

$ pairToBed -abam reads.bam -b segdups.bed -type both > reads.SSRs.bam

6.2.5 Retain only paired-end BAM alignments where neither or one and only one end
overlaps segmental duplications.

$ pairToBed -abam reads.bam -b segdups.bed -type notboth > reads.notbothSSRs.bam

71

6.3 pairToPair

6.3.1 Find all SVs (in BEDPE format) in sample 1 that are also in sample 2.
$ pairToPair -a 1.sv.bedpe -b 2.sv.bedpe | cut -f 1-10 > 1.sv.in2.bedpe

6.3.2 Find all SVs (in BEDPE format) in sample 1 that are not in sample 2.
$ pairToPair -a 1.sv.bedpe -b 2.sv.bedpe -type neither | cut -f 1-10 >
1.sv.notin2.bedpe

6.4 bamToBed

6.4.1 Convert BAM alignments to BED format.
$ bamToBed -i reads.bam > reads.bed

6.4.2 Convert BAM alignments to BED format using the BAM edit distance (NM) as the
BED “score”.

$ bamToBed -i reads.bam -ed > reads.bed

6.4.2 Convert BAM alignments to BEDPE format.
$ bamToBed -i reads.bam -bedpe > reads.bedpe

72

6.5 windowBed

6.5.1 Report all genes that are within 10000 bp upstream or downstream of CNVs.
$ windowBed -a CNVs.bed -b genes.bed -w 10000

6.5.2 Report all genes that are within 10000 bp upstream or 5000 bp downstream of
CNVs.

$ windowBed -a CNVs.bed -b genes.bed –l 10000 –r 5000

6.5.3 Report all SNPs that are within 5000 bp upstream or 1000 bp downstream of genes.
Define upstream and downstream based on strand.

$ windowBed -a genes.bed –b snps.bed –l 5000 –r 1000 -sw

6.6 closestBed

Note: By default, if there is a tie for closest, all ties will be reported. closestBed allows overlapping
features to be the closest.

6.6.1 Find the closest ALU to each gene.
$ closestBed -a genes.bed -b ALUs.bed

6.6.2 Find the closest ALU to each gene, choosing the first ALU in the file if there is a
tie.

$ closestBed -a genes.bed -b ALUs.bed –t first

6.6.3 Find the closest ALU to each gene, choosing the last ALU in the file if there is a
tie.

$ closestBed -a genes.bed -b ALUs.bed –t last

73

6.7 subtractBed

Note: If a feature in A is entirely "spanned" by any feature in B, it will not be reported.

6.7.1 Remove introns from gene features. Exons will (should) be reported.
$ subtractBed -a genes.bed -b introns.bed

6.8 mergeBed

6.8.1 Merge overlapping repetitive elements into a single entry.
$ mergeBed -i repeatMasker.bed

6.8.2 Merge overlapping repetitive elements into a single entry, returning the number of
entries merged.

$ mergeBed -i repeatMasker.bed -n

6.8.3 Merge nearby (within 1000 bp) repetitive elements into a single entry.
$ mergeBed -i repeatMasker.bed -d 1000

6.9 coverageBed

6.9.1 Compute the coverage of aligned sequences on 10 kilobase “windows” spanning the
genome.

$ coverageBed -a reads.bed -b windows10kb.bed | head
chr1 0 10000 0 10000 0.00
chr1 10001 20000 33 10000 0.21
chr1 20001 30000 42 10000 0.29
chr1 30001 40000 71 10000 0.36

74

6.9.2 Compute the coverage of aligned sequences on 10 kilobase “windows” spanning the
genome and created a BEDGRAPH of the number of aligned reads in each window for
display on the UCSC browser.

$ coverageBed -a reads.bed -b windows10kb.bed | cut –f 1-4 > windows10kb.cov.bedg

6.9.3 Compute the coverage of aligned sequences on 10 kilobase “windows” spanning the
genome and created a BEDGRAPH of the fraction of each window covered by at least
one aligned read for display on the UCSC browser.

$ coverageBed -a reads.bed -b windows10kb.bed | awk ‘{OFS=”\t”; print $1,$2,$3,$6}’
> windows10kb.pctcov.bedg

6.10 complementBed

6.10.1 Report all intervals in the human genome that are not covered by repetitive
elements.

$ complementBed -i repeatMasker.bed -g hg18.genome

6.11 shuffleBed

6.11.1 Randomly place all discovered variants in the genome. However, prevent them
from being placed in know genome gaps.

$ shuffleBed -i variants.bed -g hg18.genome -excl genome_gaps.bed

6.11.2 Randomly place all discovered variants in the genome. However, prevent them
from being placed in know genome gaps and require that the variants be randomly
placed on the same chromosome.

$ shuffleBed -i variants.bed -g hg18.genome -excl genome_gaps.bed -chrom

75

7. Advanced usage.

7.1 Mask all regions in a genome except for targeted capture regions.
Add 500 bp up and downstream of each probe
$ slopBed -i probes.bed -b 500 > probes.500bp.bed

Get a BED file of all regions not covered by the probes (+500 bp up/down)
$ complementBed -i probes.500bp.bed -g hg18.genome > probes.500bp.complement.bed

Create a masked genome where all bases are masked except for the probes +500bp
$ maskFastaFromBed -in hg18.fa -bed probes.500bp.complement.bed -fo hg18.probe-
complement.masked.fa

7.2 Screening for novel SNPs.
Find all SNPs that are not in dbSnp and not in the latest 1000 genomes calls
$ intersectBed -a snp.calls.bed -b dbSnp.bed -v | intersectBed -a stdin -b 1KG.bed
-v > snp.calls.novel.bed

7.3 Computing the coverage of features that align entirely within an
interval.
By default, coverageBed counts any feature in A that overlaps B by >= 1 bp. If
you want to require that a feature align entirely within B for it to be counted,
you can first use intersectBed with the “-f 1.0” option.
$ intersectBed -a features.bed -b windows.bed -f 1.0 | coverageBed -a stdin -b
windows.bed > windows.bed.coverage

7.4 Computing the coverage of BAM alignments on exons.
One can combine SAMtools with BEDtools to compute coverage directly from the BAM
data by using bamToBed.
$ bamToBed -i reads.bam | coverageBed -a stdin -b exons.bed > exons.bed.coverage

Take it a step further and require that coverage be from properly-paired reads.
$ samtools view -bf 0x2 reads.bam | bamToBed -i stdin | coverageBed -a stdin -b
exons.bed > exons.bed.proper.coverage

7.5 Computing coverage separately for each strand.
Use grep to only look at forward strand features (i.e. those that end in “+”).
$ bamToBed -i reads.bam | grep \+$ | coverageBed -a stdin -b genes.bed >
genes.bed.forward.coverage

Use grep to only look at reverse strand features (i.e. those that end in “-”).
$ bamToBed -i reads.bam | grep \-$ | coverageBed -a stdin -b genes.bed >
genes.bed.forward.coverage

76

7.6 Find structural variant calls that are private to one sample.
$ pairToPair -a sample1.sv.bedpe -b othersamples.sv.bedpe -type neither >
sample1.sv.private.bedpe

7.7 Exclude SV deletions that appear to be ALU insertions in the reference
genome.
We’ll require that 90% of the inner span of the deletion be overlapped by a
recent ALU.
$ pairToBed -a deletions.sv.bedpe -b ALUs.recent.bed -type notispan -f 0.80 >
deletions.notALUsinRef.bedpe

77

