Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
courses
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Requirements
External wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
R3
school
courses
Merge requests
!131
julia training slides for 2022-06-08
Code
Review changes
Check out branch
Download
Patches
Plain diff
Merged
julia training slides for 2022-06-08
mk-juliatraining
into
develop
Overview
1
Commits
11
Pipelines
0
Changes
3
Merged
Miroslav Kratochvil
requested to merge
mk-juliatraining
into
develop
2 years ago
Overview
1
Commits
11
Pipelines
0
Changes
3
Expand
opening early, there's still a tiny bit of TODOs
Guess this is valid as a 1st draft now
Edited
2 years ago
by
Miroslav Kratochvil
0
0
Merge request reports
Viewing commit
a4c36f1b
Prev
Next
Show latest version
3 files
+
28
−
25
Inline
Compare changes
Side-by-side
Inline
Show whitespace changes
Show one file at a time
Files
3
Search (e.g. *.vue) (Ctrl+P)
a4c36f1b
fixes
· a4c36f1b
Miroslav Kratochvil
authored
2 years ago
2022/2022-06-08_JuliaForNewcomers/slides/distributed.md
0 → 100644
+
243
−
0
Options
<div
class=
leader
>
<i
class=
"twa twa-rocket"
></i>
<i
class=
"twa twa-rocket"
></i>
<i
class=
"twa twa-rocket"
></i><br>
Parallel Julia
</div>
# Julia model of distributed computation
<center>
<img
src=
"slides/img/distrib.svg"
width=
"50%"
>
</center>
# Basic parallel processing
**Using `Threads`:**
1.
start Julia with parameter
`-t N`
2.
parallelize (some) loops with
`Threads.@threads`
```
julia
a
=
zeros
(
100000
)
Threads
.
@threads
for
i
=
eachindex
(
a
)
a
[
i
]
=
hardfunction
(
i
)
end
```
**Using `Distributed`:**
```
julia
using
Distributed
addprocs
(
N
)
newVector
=
pmap
(
myFunction
,
myVector
)
```
We will use the
`Distributed`
approach.
# Managing your workers
```
julia
using
Distributed
addprocs
(
4
)
myid
()
workers
()
```
Running commands on workers:
```
julia
@spawnat
3
@info
"Message from worker"
@spawnat
:
any
myid
()
```
Getting results from workers:
```
julia
job
=
@spawnat
:
any
begin
sleep
(
10
);
return
123
+
321
;
end
fetch
(
job
)
```
Cleaning up:
```
julia
rmprocs
(
workers
())
```
# Processing lots of data items in parallel
```
julia
datafiles
=
[
"file
$
i.csv"
for
i
=
1
:
20
]
@everywhere
function
process_file
(
name
)
println
(
"Processing file
$
name"
)
# ... do something ...
end
pmap
(
process_file
,
datafiles
)
```
<i
class=
"twa twa-light-bulb"
></i><i
class=
"twa twa-light-bulb"
></i>
Doing it manually:
```
julia
@sync
for
f
in
datafiles
@async
@spawnat
:
any
process_file
(
f
)
end
```
# Gathering results from workers
```
julia
items
=
collect
(
1
:
1000
)
@everywhere
compute_item
(
i
)
=
123
+
321
*
i
pmap
(
compute_item
,
items
)
```
<i
class=
"twa twa-light-bulb"
></i><i
class=
"twa twa-light-bulb"
></i><i
class=
"twa twa-light-bulb"
></i>
Doing manually with
`@spawnat`
:
```
julia
futures
=
[
@spawnat
:
any
compute_item
(
item
)
for
item
in
items
]
fetch
.
(
futures
)
```
# How to design for parallelization?
**Recommended way:**
*Utilize the high-level looping primitives!*
-
use
`map`
, parallelize by just switching to
`pmap`
-
use
`reduce`
or
`mapreduce`
, parallelize by just switching to
`dmapreduce`
(DistributedData.jl)
# <i class="twa twa-light-bulb"></i> Parallel → distributed processing
It is very easy to organize
*multiple computers*
to work for you!
You need a working
`ssh`
connection:
```
sh
user@pc1
$
ssh server1
Last login: Wed Jan 13 15:29:34 2021 from 2001:a18:....
user@server
$
_
```
Spawning remote processes on remote machines:
```
julia
julia
>
using
Distributed
julia
>
addprocs
([(
"server1"
,
10
),
(
"pc2"
,
2
)])
```
**Benefit:**
No additional changes to the parallel programs!
<div
class=
leader
>
<i
class=
"twa twa-abacus"
></i>
<i
class=
"twa twa-laptop"
></i>
<i
class=
"twa twa-desktop-computer"
></i>
<i
class=
"twa twa-flag-luxembourg"
></i><br>
Utilizing ULHPC
<i
class=
"twa twa-light-bulb"
></i>
</div>
# What does the cluster look like? (Iris)
<center>
<img
src=
"slides/img/iris.png"
width=
"30%"
>
<br>
<tt>
hpc-docs.uni.lu/systems/iris
</tt>
</center>
# Running Julia on the computing nodes
Start an allocation and connect to it:
```
sh
0
[
mkratochvil@access1 ~]
$
srun
-p
interactive
-t
30
--pty
bash
-i
```
(You can also use
`si`
.)
After some brief time, you should get a shell on a compute node. There you can install and start Julia as usual:
```
0 [mkratochvil@iris-131 ~](2696005 1N/T/1CN)$ module add lang/Julia
0 [mkratochvil@iris-131 ~](2696005 1N/T/1CN)$ julia
_
_ _ _(_)_ | Documentation: https://docs.julialang.org
(_) | (_) (_) |
_ _ _| |_ __ _ | Type "?" for help, "]?" for Pkg help.
| | | | | | |/ _` | |
| | |_| | | | (_| | | Version 1.6.2 (2021-07-14)
_/ |\__'_|_|_|\__'_| | Official https://julialang.org/ release
|__/ |
julia>
```
# Making a HPC-compatible Julia script
Main challenges:
1.
discover the available resources
2.
spawn worker processes at the right place
```
julia
using
ClusterManagers
addprocs_slurm
(
parse
(
Int
,
ENV
[
"SLURM_NTASKS"
]))
# ... continue as usual
```
# Scheduling an analysis script
Normally, you write a "batch script" and add it to a queue using
`sbatch`
.
Script in
`runAnalysis.sbatch`
:
```
sh
#!/bin/bash
# SBATCH -J MyAnalysisInJulia
# SBATCH -n 10
# SBATCH -c 1
# SBATCH -t 30
# SBATCH --mem-per-cpu 4G
julia runAnalysis.jl
```
You start the script using:
```
sh
$
sbatch runAnalysis.sbatch
```
<div
class=
leader
>
<i
class=
"twa twa-blueberries"
></i>
<i
class=
"twa twa-red-apple"
></i>
<i
class=
"twa twa-melon"
></i>
<i
class=
"twa twa-grapes"
></i><br>
Questions?
</div>
Lets do some hands-on problem solving (expected around 15 minutes)
Loading