From 3956466bef2c769dd9693585761da48bb4cc8b39 Mon Sep 17 00:00:00 2001
From: Mirek Kratochvil <miroslav.kratochvil@uni.lu>
Date: Tue, 23 May 2023 10:23:43 +0200
Subject: [PATCH] updates

---
 .../slides/bootstrap.md                       |  4 ++
 .../slides/distributed.md                     | 18 ++-----
 2023/2023-06-06_Julia-HPCSchool/slides/gpu.md | 49 ++++++++++++++++---
 .../slides/intro.md                           |  1 +
 .../slides/language.md                        | 15 ++++--
 .../slides/overview.md                        |  2 +-
 .../2023-06-06_Julia-HPCSchool/slides/pkgs.md |  8 +--
 .../slides/thanks.md                          | 10 ++++
 8 files changed, 75 insertions(+), 32 deletions(-)

diff --git a/2023/2023-06-06_Julia-HPCSchool/slides/bootstrap.md b/2023/2023-06-06_Julia-HPCSchool/slides/bootstrap.md
index 1638a1eb..efba2c95 100644
--- a/2023/2023-06-06_Julia-HPCSchool/slides/bootstrap.md
+++ b/2023/2023-06-06_Julia-HPCSchool/slides/bootstrap.md
@@ -39,6 +39,10 @@ sqrt(x)
 Computes the square root .....
 ```
 
+- *If you like notebooks*, Julia kernels are available too (but in comparison
+  they are quite impractical)
+- VSCode extension exists too (feels very much like RStudio)
+
 
 
 # REPL modes
diff --git a/2023/2023-06-06_Julia-HPCSchool/slides/distributed.md b/2023/2023-06-06_Julia-HPCSchool/slides/distributed.md
index 06734c15..f27a3aee 100644
--- a/2023/2023-06-06_Julia-HPCSchool/slides/distributed.md
+++ b/2023/2023-06-06_Julia-HPCSchool/slides/distributed.md
@@ -165,7 +165,7 @@ Utilizing ULHPC <i class="twa twa-light-bulb"></i>
 
 
 
-# What does the cluster look like? (Iris)
+# Reminder: ULHPC (iris)
 
 <center>
 <img src="slides/img/iris.png" width="30%">
@@ -186,7 +186,7 @@ Start an allocation and connect to it:
 
 After some brief time, you should get a shell on a compute node. There you can install and start Julia as usual:
 
-```
+```tex
 0 [mkratochvil@iris-131 ~](2696005 1N/T/1CN)$ module add lang/Julia
 0 [mkratochvil@iris-131 ~](2696005 1N/T/1CN)$ julia
                _
@@ -194,7 +194,7 @@ After some brief time, you should get a shell on a compute node. There you can i
   (_)     | (_) (_)    |
    _ _   _| |_  __ _   |  Type "?" for help, "]?" for Pkg help.
   | | | | | | |/ _` |  |
-  | | |_| | | | (_| |  |  Version 1.6.2 (2021-07-14)
+  | | |_| | | | (_| |  |  Version 1.8.5 (2023-01-08)
  _/ |\__'_|_|_|\__'_|  |  Official https://julialang.org/ release
 |__/                   |
 
@@ -239,15 +239,3 @@ You start the script using:
 ```sh
  $ sbatch runAnalysis.sbatch
 ```
-
-
-
-<div class=leader>
-<i class="twa twa-blueberries"></i>
-<i class="twa twa-red-apple"></i>
-<i class="twa twa-melon"></i>
-<i class="twa twa-grapes"></i><br>
-Questions?
-</div>
-
-Lets do some hands-on problem solving (expected around 15 minutes)
diff --git a/2023/2023-06-06_Julia-HPCSchool/slides/gpu.md b/2023/2023-06-06_Julia-HPCSchool/slides/gpu.md
index c16d301b..dc600cbc 100644
--- a/2023/2023-06-06_Julia-HPCSchool/slides/gpu.md
+++ b/2023/2023-06-06_Julia-HPCSchool/slides/gpu.md
@@ -1,8 +1,11 @@
 
 <div class=leader>
-<i class="twa twa-rocket"></i>
-<i class="twa twa-rocket"></i>
-<i class="twa twa-rocket"></i><br>
+<i class="twa twa-volcano"></i>
+<i class="twa twa-mount-fuji"></i>
+<i class="twa twa-snow-capped-mountain"></i>
+<i class="twa twa-mountain"></i>
+<i class="twa twa-sunrise-over-mountains"></i>
+<br>
 Utilizing GPUs
 </div>
 
@@ -27,13 +30,13 @@ There's also:
 ```julia
 julia> data = randn(10000,10000);
 
-julia> @time (data'*data);
+julia> @time data*data;
 
 julia> using CUDA
 
 julia> data = cu(data);
 
-julia> @time data*data
+julia> @time data*data;
 ```
 
 
@@ -42,6 +45,7 @@ julia> @time data*data
 
 The "high-level" API spans most of the CU* helper tools:
 
+- broadcasting numerical operations via translation to simple kernels (`.+`, `.*`, `.+=`, `ifelse.`, `sin.`, ...)
 - matrix and vector operations using `CUBLAS`
 - `CUSOLVER` (solvers, decompositions etc.) via `LinearAlgebra.jl`
 - ML ops (in `Flux.jl`): `CUTENSOR`
@@ -59,20 +63,49 @@ The "high-level" API spans most of the CU* helper tools:
 CUDA kernels (`__device__` functions) are generated transparently directly from Julia code.
 
 ```julia
-a = CUDA.zeros(1024)
+a = cu(someArray)
 
-function kernel(a)
+function myKernel(a)
     i = threadIdx().x
     a[i] += 1
     return
 end
 
-@cuda threads=length(a) kernel(a)
+@cuda threads=length(a) myKernel(a)
 ```
 
 Some Julia constructions will not be feasible on the GPU (mainly allocating complex structures); these will trigger a compiler message from `@cuda`.
 
 
+
+# Programming kernels -- usual tricks
+
+The amount of threads and blocks is limited by hardware; let's make a
+grid-stride loop to process a lot of data quickly!
+
+```julia
+a = cu(someArray)
+b = cu(otherArray)
+
+function (a, b)
+    index = threadIdx().x + blockDim().x * (blockIdx().x-1)
+    gridStride = gridDim().x * blockDim().x
+    for i = index:gridStride:length(a)
+        a[i] += someMathFunction(b[i])
+    end
+    return
+end
+
+@cuda threads=1024 blocks=32 kernel(a)
+```
+
+Typical CUDA trade-offs:
+- too many blocks won't work, insufficient blocks won't cover your SMs
+- too many threads per block will fail or spill to memory (slow), insufficient threads won't allow parallelization/latency hiding in SM
+- thread divergence destroys performance
+
+
+
 # CUDA.jl interface
 
 Functions available in the kernel:
diff --git a/2023/2023-06-06_Julia-HPCSchool/slides/intro.md b/2023/2023-06-06_Julia-HPCSchool/slides/intro.md
index 8c3d5d84..06d3488c 100644
--- a/2023/2023-06-06_Julia-HPCSchool/slides/intro.md
+++ b/2023/2023-06-06_Julia-HPCSchool/slides/intro.md
@@ -3,6 +3,7 @@
 *Why is it good to work in compiled language?*
 
 - Programs become much faster for free.
+- Even if you use the language as a package glue, at least the glue is not slow.
 
 *What do we gain by having types in the language?*
 
diff --git a/2023/2023-06-06_Julia-HPCSchool/slides/language.md b/2023/2023-06-06_Julia-HPCSchool/slides/language.md
index 26fee231..8ca8ef44 100644
--- a/2023/2023-06-06_Julia-HPCSchool/slides/language.md
+++ b/2023/2023-06-06_Julia-HPCSchool/slides/language.md
@@ -4,7 +4,7 @@
 <i class="twa twa-red-circle"></i>
 <i class="twa twa-green-circle"></i>
 <i class="twa twa-purple-circle"></i><br>
-$LANG to Julia in 15 minutes
+<span style="color:#888">$LANG</span> to Julia in 15 minutes
 </div>
 
 
@@ -13,6 +13,7 @@ $LANG to Julia in 15 minutes
 
 - you can `Tab` through almost anything in REPL
 - functions have useful help with examples, try `?cat`
+- `typeof(something)` may give good info
 
 
 
@@ -39,8 +40,6 @@ $LANG to Julia in 15 minutes
 - `Set{Int}`
 - `Dict{Int,String}`
 
-(default type is typically `Any`)
-
 
 
 # Basic functionality and expectable stuff
@@ -55,7 +54,7 @@ Surprising parts:
 - all functions can (and should) be overloaded
   - simply add a type annotation to parameter with `::` to distinguish between implementations for different types
   - overloading is cheap
-  - specialization to types is __precisely__ the reason why compiled code can be fast
+  - *specialization to known simple types types* is precisely the reason why compiled code can be *fast*
   - adding type annotations to code and parameters helps the compiler to do the right thing
 
 
@@ -65,8 +64,14 @@ Surprising parts:
 Using functional-style loops is *much less error-prone* to indexing
 errors.
 
-- Transform an array:
+- Transform an array, original:
 
+```julia
+for i=eachindex(arr)
+   arr[i] = sqrt(arr[i])
+end
+```
+  Structured:
 ```julia
 map(sqrt, [1,2,3,4,5])
 map((x,y) -> (x^2 - exp(y)), [1,2,3], [-1,0,1])
diff --git a/2023/2023-06-06_Julia-HPCSchool/slides/overview.md b/2023/2023-06-06_Julia-HPCSchool/slides/overview.md
index f79f1672..d85fac41 100644
--- a/2023/2023-06-06_Julia-HPCSchool/slides/overview.md
+++ b/2023/2023-06-06_Julia-HPCSchool/slides/overview.md
@@ -1,6 +1,6 @@
 # Overview
 
 1. Why would you learn another programming language again?
-2. $OTHERLANG to Julia in 15 minutes
+2. `$OTHERLANG` to Julia in 15 minutes
 3. Running distributed Julia on ULHPC
 4. Easy GPU programming with CUDA.jl
diff --git a/2023/2023-06-06_Julia-HPCSchool/slides/pkgs.md b/2023/2023-06-06_Julia-HPCSchool/slides/pkgs.md
index fe346fae..4da34589 100644
--- a/2023/2023-06-06_Julia-HPCSchool/slides/pkgs.md
+++ b/2023/2023-06-06_Julia-HPCSchool/slides/pkgs.md
@@ -4,18 +4,20 @@
 <i class="twa twa-blue-book"></i>
 <i class="twa twa-computer-disk"></i>
 <i class="twa twa-chart-increasing"></i><br>
-Packages for doing stuff
+Packages for <br>doing useful things
 </div>
 
 
 
-# Packages for doing stuff
+# How do I do ... ?
 
 - Structuring the data: `DelimitedFiles`, `CSV`, `DataFrames`
 - Working with large data: `DistributedArrays`, `LabelledArrays`
 - Stats: `Distributions`, `StatsBase`, `Statistics`
+- Math: `ForwardDiff`, `Symbolics`
+- Problem solving: `JuMP`, `DifferentialEquations`
 - ML: `Flux`
-- Problem solving: `JuMP`
+- Bioinformatics: `BioSequences`, `GenomeGraphs`
 - Plotting: `Makie`, `UnicodePlots`
 - Writing notebooks: `Literate`
 
diff --git a/2023/2023-06-06_Julia-HPCSchool/slides/thanks.md b/2023/2023-06-06_Julia-HPCSchool/slides/thanks.md
index 71413a6b..0e98ee87 100644
--- a/2023/2023-06-06_Julia-HPCSchool/slides/thanks.md
+++ b/2023/2023-06-06_Julia-HPCSchool/slides/thanks.md
@@ -1,4 +1,14 @@
 
+<div class=leader>
+<i class="twa twa-blueberries"></i>
+<i class="twa twa-red-apple"></i>
+<i class="twa twa-melon"></i>
+<i class="twa twa-grapes"></i><br>
+Questions?
+</div>
+
+
+
 # Thank you!
 
 <center><img src="slides/img/r3-training-logo.png" height="200px"></center>
-- 
GitLab