Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
E
Energy Metabolism Model Astrocyte
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Wiki
Requirements
External wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
ICS-lcsb
Energy Metabolism Model Astrocyte
Commits
b3cc431f
Commit
b3cc431f
authored
1 year ago
by
Sofia Farina
Browse files
Options
Downloads
Patches
Plain Diff
Upload New File
parent
d2ddbea5
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
Experiment_3/Reactive Astrocyte/Experiment_3_reactive_astrocyte_Part3
+506
-0
506 additions, 0 deletions
.../Reactive Astrocyte/Experiment_3_reactive_astrocyte_Part3
with
506 additions
and
0 deletions
Experiment_3/Reactive Astrocyte/Experiment_3_reactive_astrocyte_Part3
0 → 100644
+
506
−
0
View file @
b3cc431f
"""
Solving the metabolic system in a reactive astrocytic domain
"""
import numpy as np
from dolfin import *
from cutfem import *
from timeit import default_timer as timer
from Dimensionless_parameters import *
parameters["form_compiler"]["no-evaluate_basis_derivatives"] = False
parameters['allow_extrapolation'] = True
# Start timer
startime = timer()
date = time.strftime("%d%m%Y")
############################
# READ FROM HDF5 File #
############################
f = HDF5File(mpi_comm_world(), './AD_results_'+ date + '/hdfFile', 'r')
bg_mesh = Mesh()
f.read(bg_mesh, "bg_mesh", False)
W = FunctionSpace(bg_mesh, "CG", 1)
level_set = Function(W)
f.read(level_set, 'level_set')
f.close()
# read the volume from part 1
volume = np.load('./AD_results_' + date + '/Volume.npy')
mesh = CutFEMTools_fictitious_domain_mesh(bg_mesh,level_set,0,0)
L = np.load('./AD_results_' + date + '/L.npy')
# Define the sum of ATP+ADP inside the cell
sum_atp_adp = 3.2
# define the dimensionless parameter alpha
alpha = 0.16
# define the dimensionless diffusion concentration for each species
D_a_bar, D_b_bar, D_c_bar, D_d_bar, D_e_bar, D_f_bar = dimensionless_diffusion_coeff()
# Dimensionless parameters
t_c, f_bar, lac_bar, beta_a, beta_b, beta_c, beta_d, gamma_b, gamma_c, gamma_d, gamma_e, mu_e, mu_g, csi_b, csi_c, csi_e, tau_b, tau_c = dim_param(L, alpha, sum_atp_adp, 1.0)
# store the dimensionless time
np.save('./AD_results_' + date + '/t_c.npy', t_c)
# Define final dimensionless time
T = 90/t_c # final time
print('final time', T)
num_step = 250 # number of time step
dt = T / num_step
k = Constant(dt)
# cutfem parameters
beta = 10.0
gamma =0.1
# compute normals
n = FacetNormal(mesh)
h = CellSize(mesh)
# Compute Mesh -Levelset intersection and corresponding marker
mesh_cutter = MeshCutter(mesh,level_set)
# Diminishing quadrature points
q_degree = 3
# Define new measures associated with the interior domains and facets
dx = Measure("dx")[mesh_cutter.domain_marker()]
dS = Measure("dS")[mesh_cutter.interior_facet_marker(0)]
dxq = dc(0, metadata={"num_cells": 1, 'quadrature_degree': q_degree})
dsq = dc(1, metadata={"num_cells": 1})
dxc = dx(0, metadata={'quadrature_degree': q_degree}) + dxq
# Finite Element space for the concentration
T = FunctionSpace(mesh,"P",1)
V0 = MixedFunctionSpace([T, T, T, T, T, T])
# Define test functions
(v_1, v_2, v_3, v_4, v_5, v_6) = TestFunctions(V0)
# Define Trial functions which must be Functions instead of Trial Functions cause the pb is non linear
u = Function (V0)
# Define the initial condition of concetrations
a_0 = 0.0
b_0 = 1.6 / sum_atp_adp
c_0 = 1.6 / sum_atp_adp
d_0 = 0.0
e_0 = 0.0
f_0 = 0.0
u_0 = Expression(('a_0', 'b_0', 'c_0','d_0', 'e_0', 'f_0'), a_0=a_0, b_0=b_0, c_0=c_0, d_0=d_0, e_0=e_0, f_0=f_0, degree=1)
u_n = interpolate(u_0, V0)
a, b, c, d, e, f = split(u)
a_n, b_n, c_n, d_n, e_n, f_n = split(u_n)
# Reaction sites
from Enzymes import Gauss_expression_3d
# From Part 2 read the coordinates of the reaction sites
list_of_enzymes = np.load('./AD_results_' + date + '/enzymes_coordinates.npy')
M = len(list_of_enzymes[0])
coordinate_enzymes_hxk = list_of_enzymes[0:3]
coordinate_enzymes_pyrk = list_of_enzymes[3:6]
coordinate_enzymes_ldh = list_of_enzymes[6:9]
# Read coordinates of mitochondria
mito = np.load('Images/AD_mito4cutfem_scaled_sigma.npy')
mito_points = mito.T
# Read the adaptive parameter eta
eta_hxk, eta_pyrk, eta_ldh, eta_mito = np.load('./AD_results_' + date + '/eta.npy')
# Variance dimensionless
sigma = 1./L
def Sum_Gaussian_Mito(M, coordinate_enzymes_test, sigma):
Gaussian = 0
for i in range(M):
Gaussian += Gauss_expression_3d(coordinate_enzymes_test[0,i], coordinate_enzymes_test[1,i],coordinate_enzymes_test[2,i], sigma[i])
return(Gaussian)
def Sum_Gaussian(M, coordinate_enzymes_test, sigma):
if M == 1:
Gaussian = Gauss_expression_3d(coordinate_enzymes_test[0], coordinate_enzymes_test[1],coordinate_enzymes_test[2], sigma)
else:
Gaussian = 0
for i in range(M):
Gaussian += Gauss_expression_3d(coordinate_enzymes_test[0,i], coordinate_enzymes_test[1,i],coordinate_enzymes_test[2,i], sigma)
return(Gaussian)
Gaussian_hxk = Sum_Gaussian(M, coordinate_enzymes_hxk, sigma)
Gaussian_pyrk = Sum_Gaussian(M, coordinate_enzymes_pyrk, sigma)
Gaussian_ldh = Sum_Gaussian(M, coordinate_enzymes_ldh, sigma)
Gaussian_mito = Sum_Gaussian_Mito(len(mito.T[0]), mito_points[:-1], mito_points[-1])
# Reaction rates
k_hxk = Constant(0.0619)
k_pyrk = Constant(1.92)
k_ldh = Constant(0.719)
k_mito = Constant(0.0813)
K_act = Constant(0.169)
# Spatial reaction rates
K_hxk = Gaussian_hxk/eta_hxk * k_hxk * Constant(volume)
K_pyrk = Gaussian_pyrk/eta_pyrk * k_pyrk * Constant(volume)
K_ldh = Gaussian_ldh/eta_ldh * k_ldh * Constant(volume)
K_mito = Gaussian_mito/eta_mito * k_mito * Constant(volume)
################################################################
# Define the source term
# read the subdomain volume computed in Part 2
subdomain_volume = np.load('./AD_results_' + date + '/subdomain_volume_glc.npy')
influx = f_bar * volume /subdomain_volume
radius_influx = 0.0307
x_infl, y_infl, z_infl = 0.313278, 0.520833, 0.0302059
x_infl2, y_infl2, z_infl2 = 0.104167, 0.0, 0.0815185
x_infl3, y_infl3, z_infl3 = 0.364583, 0.572917, 0.0402746
f_1 = Expression('(pow(x[0] - x_0,2) + pow(x[1] - y_0,2) + pow(x[2]- z_0,2)) < (r * r) ? influx : 0', influx=influx, r=radius_influx, x_0 = x_infl , y_0 = y_infl, z_0 = z_infl, degree=1)
f_1 += Expression('(pow(x[0] - x_0,2) + pow(x[1] - y_0,2) + pow(x[2]- z_0,2)) < (r * r) ? influx : 0', influx=influx, r=radius_influx, x_0 = x_infl2 , y_0 = y_infl2, z_0 = z_infl2, degree=1)
f_1 += Expression('(pow(x[0] - x_0,2) + pow(x[1] - y_0,2) + pow(x[2]- z_0,2)) < (r * r) ? influx : 0', influx=influx, r=radius_influx, x_0 = x_infl3, y_0 = y_infl3, z_0 = z_infl3, degree=1)
# Define Lac
subdomain_outflux_volume = np.load('./AD_results_' + date + '/subdomain_volume_lac.npy')
outflux = lac_bar * volume/ subdomain_outflux_volume
radius_outflux = 0.035
x_out, y_out, z_out = 0.923611, 1., 0.0203796
x_out2, y_out2, z_out2 = 1., 0.909722, 0.0135864
x_out3, y_out3, z_out3 = 0.506944, 0.993056, 0.0543457
x_out4, y_out4, z_out4 =0.989583, 0.510142, 0.0402746
eta_f = Expression('(pow(x[0] - x_0,2) + pow(x[1] - y_0,2) + pow(x[2]- z_0,2)) < (r * r) ? outflux : 0', outflux = outflux, r=radius_outflux, x_0 = x_out , y_0 = y_out, z_0 = z_out, degree=1)
eta_f += Expression('(pow(x[0] - x_0,2) + pow(x[1] - y_0,2) + pow(x[2]- z_0,2)) < (r * r) ? outflux : 0', outflux = outflux, r=radius_outflux, x_0 = x_out2 , y_0 = y_out2, z_0 = z_out2, degree=1)
eta_f += Expression('(pow(x[0] - x_0,2) + pow(x[1] - y_0,2) + pow(x[2]- z_0,2)) < (r * r) ? outflux : 0', outflux = outflux, r=radius_outflux, x_0 = x_out3, y_0 = y_out3, z_0 = z_out3, degree=1)
eta_f += Expression('(pow(x[0] - x_0,2) + pow(x[1] - y_0,2) + pow(x[2]- z_0,2)) < (r * r) ? outflux : 0', outflux = outflux, r=radius_outflux, x_0 = x_out4, y_0 = y_out4, z_0 = z_out4, degree=1)
# Weak formulation dimensionless system
F = ((a - a_n) / k) * v_1 * dxc \
+ D_a_bar * dot(grad(a), grad(v_1)) * dxc + K_hxk * beta_a * a * b**2 * v_1 * dxc \
+ ((b - b_n) / k) * v_2 * dxc \
+ D_b_bar * dot(grad(b), grad(v_2)) * dxc + 2 * K_hxk * beta_b * a * b**2 * v_2 * dxc - 2 * K_pyrk * gamma_b * d * c**2 * v_2 * dxc - 28 * K_mito * csi_b * e * c**28 * v_2 * dxc + K_act * tau_b * b * v_2 * dxc\
+ ((c - c_n) / k)*v_3 * dxc \
+ D_c_bar * dot(grad(c), grad(v_3)) * dxc - 2 * K_hxk * beta_c * a * b**2 * v_3 * dxc + 2 * K_pyrk * gamma_c * d * c**2 * v_3 * dxc - K_act *tau_c * b * v_3 * dxc + 28 * K_mito * csi_c * e * c**28 * v_3 * dxc\
+ ((d - d_n) / k)*v_4 * dxc\
+ D_d_bar * dot(grad(d),grad(v_4)) * dxc - 2 * K_hxk * beta_d * a * b**2 * v_4 * dxc + K_pyrk * gamma_d * d * c**2 * v_4 * dxc\
+ ((e - e_n) / k)*v_5 * dxc\
+ D_e_bar * dot(grad(e),grad(v_5)) * dxc - K_pyrk * gamma_e * d * c**2 * v_5 * dxc + K_ldh * mu_e * e * v_5 * dxc + K_mito * csi_e * e * c**28 * v_5 * dxc\
+ ((f - f_n) / k)*v_6 * dxc\
+ D_f_bar * dot(grad(f),grad(v_6)) * dxc - K_ldh * mu_g * e * v_6 * dxc + eta_f * f * v_6 * dxc\
- f_1 * v_1 * dxc
F += avg(gamma) * avg(h) * D_a_bar * dot(jump(grad(a), n), jump(grad(v_1), n)) * dS(1) + avg(gamma) * avg(h) * D_b_bar *dot(jump(grad(b), n), jump(grad(v_2), n)) * dS(1)\
+ avg(gamma) * avg(h) * D_c_bar * dot(jump(grad(c), n), jump(grad(v_3), n)) * dS(1) + avg(gamma) * avg(h) * D_d_bar * dot(jump(grad(d), n), jump(grad(v_4), n)) * dS(1)\
+ avg(gamma) * avg(h) * D_e_bar * dot(jump(grad(e), n), jump(grad(v_5), n)) * dS(1) + avg(gamma) * avg(h) * D_f_bar * dot(jump(grad(f), n), jump(grad(v_6), n)) * dS(1)
#Create VTK files for visualization output
vtkfile_a = File('AD_results_' + date + '/a/a.pvd')
vtkfile_b = File('AD_results_' + date + '/b/b.pvd')
vtkfile_c = File('AD_results_' + date + '/c/c.pvd')
vtkfile_d = File('AD_results_' + date + '/d/d.pvd')
vtkfile_e = File('AD_results_' + date + '/e/e.pvd')
vtkfile_f = File('AD_results_' + date + '/f/f.pvd')
# Compute Jacobian
J = derivative(F, u)
# Fictitious domain
composite_mesh = CompositeMesh()
composite_mesh.add(mesh)
V = CompositeFunctionSpace(composite_mesh)
V.add(V0);
V.build();
# Constrain dofs outside
FidoTools_compute_constrained_dofs(V, mesh_cutter)
a = FidoForm(V, V)
form_a = create_dolfin_form(J)
a.add(form_a, mesh_cutter)
L = FidoForm(V)
form_L = create_dolfin_form(F)
L.add(form_L, mesh_cutter);
# Space for the solution
cutmesh0 = CutFEMTools_physical_domain_mesh(mesh, mesh_cutter.cut_cells(0), mesh_cutter.domain_marker(), 0);
V0Phys = FunctionSpace(cutmesh0, "CG", 1);
a_inter = Function(V0Phys);
b_inter = Function(V0Phys);
c_inter = Function(V0Phys);
d_inter = Function(V0Phys);
e_inter = Function(V0Phys);
f_inter = Function(V0Phys);
# Time stepping
t = [0.0]
# Function that compute the average concentration inside the astrocyte
def compute_average_concentration(conc, V):
int_conc = conc * dxc
form_conc_mean = create_dolfin_form(int_conc)
composite_form_conc_mean = CompositeForm(V)
composite_form_conc_mean.add(form_conc_mean)
cut_cells = mesh_cutter.cut_cells(0)
quadrature = Quadrature(cut_cells.type().cell_type(),cut_cells.geometry().dim(),order=2)
composite_form_conc_mean.cut_form(0).set_quadrature(0, quadrature);
composite_form_conc_mean.cut_form(0).set_cut_mesh(0, cut_cells);
composite_form_conc_mean.cut_form(0).add_single_parent_mesh_id(0, 0);
mean_conc = composite_assemble(composite_form_conc_mean)
return(mean_conc)
def compute_LAC_efflux(bg_mesh, level_set, subdom2comp):
r = radius_outflux
class Sub_Efflux(SubDomain):
def inside(self, x, on_boundary):
return ((pow(x[0] - x_out, 2) + pow(x[1] - y_out, 2) + pow(x[2] - z_out, 2)) <= (r * r))
class Sub_Efflux2(SubDomain):
def inside(self, x, on_boundary):
return ( (pow(x[0] - x_out2, 2) + pow(x[1] - y_out2, 2) + pow(x[2] - z_out2, 2)) < (r * r))
class Sub_Efflux3(SubDomain):
def inside(self, x, on_boundary):
return ( (pow(x[0] - x_out3, 2) + pow(x[1] - y_out3, 2) + pow(x[2] - z_out3, 2)) < (r * r) )
class Sub_Efflux4(SubDomain):
def inside(self, x, on_boundary):
return ( (pow(x[0] - x_out4, 2) + pow(x[1] - y_out4, 2) + pow(x[2] - z_out4, 2)) < (r * r) )
# Create mesh
mesh = CutFEMTools_fictitious_domain_mesh(bg_mesh, level_set, 0, 0)
# Compute Mesh -Levelset intersection and corresponding marker
mesh_cutter = MeshCutter(mesh, level_set)
marker_test = mesh_cutter.domain_marker()
Sub_Efflux().mark(marker_test, 50)
Sub_Efflux2().mark(marker_test, 50)
Sub_Efflux3().mark(marker_test, 50)
Sub_Efflux4().mark(marker_test, 50)
# file = File("./test_domain_marker.pvd")
# file << marker_test
# Define new measures associated with the interior domains and facets
dx = Measure("dx", domain=mesh)[marker_test]
dxq = dc(0, metadata={"num_cells": 1}) # cut cells inside the Circle
dx_eff = dx(50) + dxq
V0 = FunctionSpace(mesh, "Lagrange", 1)
# Fictitious domain
composite_mesh = CompositeMesh()
composite_mesh.add(mesh)
V = CompositeFunctionSpace(composite_mesh)
V.add(V0);
V.build();
# Constrain dofs outside
FidoTools_compute_constrained_dofs(V, mesh_cutter)
u_e_V0 = project(subdom2comp, V0)
psi0 = u_e_V0 * dx_eff
form_psi0 = create_dolfin_form(psi0)
composite_form_psi0 = CompositeForm(V)
composite_form_psi0.add(form_psi0)
area_ls_cutfem = composite_assemble(composite_form_psi0)
return(area_ls_cutfem)
# Empty list to save the values
list_a =[]
list_b =[]
list_c =[]
list_d =[]
list_e = []
list_f = []
time_list = []
# add the time = 0
time_list.append(t[0])
mean_a_ = compute_average_concentration(a_n, V)
mean_b_ = compute_average_concentration(b_n, V)
mean_c_ = compute_average_concentration(c_n, V)
mean_d_ = compute_average_concentration(d_n, V)
mean_e_ = compute_average_concentration(e_n, V)
mean_f_ = compute_average_concentration(f_n, V)
list_a.append(mean_a_/ volume)
list_b.append(mean_b_/ volume)
list_c.append(mean_c_/ volume)
list_d.append(mean_d_/ volume)
list_e.append(mean_e_/ volume)
list_f.append(mean_f_/ volume)
efflux_lac = []
lac_eff = compute_LAC_efflux(bg_mesh, level_set, f_n)
efflux_lac.append(lac_eff)
# Parameter for solver
Nmax = 50
abs_tol = 1.0e-12
rel_tol = 1.0e-07
# Initial residual
initial_residual = composite_assemble(L)
absolute0 = initial_residual.norm('l2')
for i in range(num_step):
print("Timestep", i)
print("Time", t)
n = 1
while n < Nmax:
A = composite_assemble(a)
b = composite_assemble(L)
uc = CompositeFunction(V)
solve(A, uc.vector(), -b, 'mumps')
u.vector().axpy(1.0, uc.part(0).vector())
residual = composite_assemble(L)
# absolute residual
absolute = residual.norm('l2')
# relative residual
relative = absolute / absolute0
if absolute < abs_tol or relative < rel_tol:
break
else:
n += 1
_a, _b, _c, _d, _e, _f = u.split()
## To save the vtk uncomment this section.
#
## save GLC
#a_inter.interpolate(_a);
## save ATP
#b_inter.interpolate(_b);
## save ADP
#c_inter.interpolate(_c);
## save GLY
#d_inter.interpolate(_d);
## save PYR
#e_inter.interpolate(_e);
## save LAC
#f_inter.interpolate(_f);
#
#vtkfile_a << (a_inter, t[0])
#vtkfile_b << (b_inter, t[0])
#vtkfile_c << (c_inter, t[0])
#vtkfile_d << (d_inter, t[0])
#vtkfile_e << (e_inter, t[0])
#vtkfile_f << (f_inter, t[0])
u_n._assign(u)
t[0] = t[0] + dt
time_list.append(t[0])
#Compute average concentration inside astrocyte of each species
mean_a_ = compute_average_concentration(_a, V)
mean_b_ = compute_average_concentration(_b, V)
mean_c_ = compute_average_concentration(_c, V)
mean_d_ = compute_average_concentration(_d, V)
mean_e_ = compute_average_concentration(_e, V)
mean_f_ = compute_average_concentration(_f, V)
list_a.append(mean_a_/ volume)
list_b.append(mean_b_/ volume)
list_c.append(mean_c_/ volume)
list_d.append(mean_d_/ volume)
list_e.append(mean_e_/ volume)
list_f.append(mean_f_/ volume)
# Compute the LAC concentration in the subregions where the efflux is defined
lac_eff = compute_LAC_efflux(bg_mesh, level_set, _f)
efflux_lac.append(lac_eff)
# stop time
aftersolve = timer()
tottime = aftersolve-startime
print('Final time', tottime)
# Create a single list with all the solutions
list_of_list = [list_a, list_b, list_c, list_d, list_e, list_f, time_list]
# save using numpy
print(list_a, list_b, list_c, list_d, list_e, list_f, time_list)
np.save('./AD_results_' + date + '/AD_3Dastro_list' + pathology, np.asarray(list_of_list))
np.save('./AD_results_' + date + '/lac_efflux' + pathology, np.asarray(efflux_lac))
\ No newline at end of file
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment