Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
models
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Wiki
Requirements
External wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
COVID-19
models
Commits
ce252803
Commit
ce252803
authored
4 years ago
by
Dezso Modos
Browse files
Options
Downloads
Patches
Plain Diff
Omnipath example R notebook. Feel free to use it.
parent
23716c4a
No related branches found
Branches containing commit
No related tags found
Tags containing commit
1 merge request
!150
Omnipath example R notebook.
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
Resources/Text mining/COVID_example.Rmd
+79
-0
79 additions, 0 deletions
Resources/Text mining/COVID_example.Rmd
with
79 additions
and
0 deletions
Resources/Text mining/COVID_example.Rmd
0 → 100644
+
79
−
0
View file @
ce252803
---
title: "Simple R notebook for OmniPathR in COVID-19"
output: html_notebook
---
Try executing this chunk by clicking the *Run* button within the chunk or by placing your cursor inside it and pressing *Ctrl+Shift+Enter*.
```{r}
if(!'OmnipathR' %in% installed.packages()[,"Package"]){
require(devtools)
install_github('saezlab/OmnipathR')
}
require(OmnipathR)
```
```{r}
require(dplyr)
require(tibble)
require(purrr)
require(openxlsx)
require(igraph)
require(qgraph)
```
We download the OmniPath interactions
```{r}
ia_omnipath <- import_Omnipath_Interactions() %>% as_tibble()
```
```{r}
PRKACA_interactors<- ia_omnipath[ia_omnipath$source=="P17612",]
#write.table(head(PRKACA_interactors), "sample_interactions.csv", sep=",")
length(unique(PRKACA_interactors$target_genesymbol))
head(PRKACA_interactors)
```
We can also see various annotations of the proteins. E.g localisation or pathways.
Let's see what kind of databases are available.
```{r}
get_annotation_databases()
```
Let's check the cytosol proteins where the CAMP dependent protin kinase targets should be. We use the human protein atlas for that.
```{r}
PRKACA_targets_intracell_localisation <- import_Omnipath_annotations(select_genes= PRKACA_interactors$target_genesymbol, filter_databases=c("HPA_subcellular")) %>% as_tibble()
cytosol_portiens <- PRKACA_targets_intracell_localisation[PRKACA_targets_intracell_localisation$value=="Cytosol",]
```
Let'ss ay we want to sewee which proteins will be affected by PRKACA in the lung.
```{r}
PRKACA_targets_tissue_localisation <- import_Omnipath_annotations(select_genes= PRKACA_interactors$target_genesymbol, filter_databases=c("HPA_tissue")) %>% as_tibble()
```
```{r}
head(PRKACA_targets_tissue_localisation)
```
```{r}
organ_annotations <- PRKACA_targets_tissue_localisation[PRKACA_targets_tissue_localisation$label=="organ", ]
lung_PRKCA_protein_annotations <- organ_annotations[organ_annotations$value=="lung",]
records <- unique(lung_PRKCA_protein_annotations$record_id)
PRKACA_targets_tissue_localisation_lung_data <- PRKACA_targets_tissue_localisation %>% filter(record_id %in%c(records))
to_select_level <- PRKACA_targets_tissue_localisation_lung_data[PRKACA_targets_tissue_localisation_lung_data$label == "level", ]
record_ids_for_selection = to_select_level[to_select_level$value!="Not detected", "record_id"]
PRKACA_targets_expressed_in_lung <- PRKACA_targets_tissue_localisation_lung_data %>% filter(record_id %in%c(record_ids_for_selection$record_id))
result<-PRKACA_targets_expressed_in_lung[PRKACA_targets_expressed_in_lung$label==c("tissue", "level"), ]
length(unique(PRKACA_targets_expressed_in_lung$uniprot))
head(result)
```
```{r}
write.table(lung_PRKCA_protein_interactors, "PRKCA_interactors_in_the_lung_HPA.csv", sep=",")
length(unique(lung_PRKCA_protein_interactors$uniprot))
```
Transcriptional regulation
If you want more interactions, pass the argument
confidence_level = c('A', 'B', 'C', 'D')
For descriptionof confidence levels see the paper: https://genome.cshlp.org/content/29/8/1363
```{r}
ia_transcriptional <- import_TFregulons_Interactions(confidence_level = c('A', 'B', 'C')) %>% as_tibble()
```
Let's say we want to find some transcription factors which regualte the ACE2 receptor
```{r}
ia_transcriptional[ia_transcriptional$target=="Q9BYF1",c("source", "source_genesymbol")]
```
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment