Skip to content
Snippets Groups Projects

Figures valentina

Merged Susheel Busi requested to merge figures_valentina into master
+ 96
0
# To generate figures for PathoFact output
library(tidyverse)
library(ggplot2)
#################
# Preprocessing #
#################
ONT <- read.csv("~/Documents/R_data/nanopore_ONT/pathofact_AMR/PathoFact_ONT.csv", row.names=1)
# Toxin prediction
Toxin_confidence_level <- c("-","1","2")
Toxin_prediction <- c("non-pathogenic","secreted","non-secreted")
Toxin <- data.frame(Toxin_confidence_level,Toxin_prediction)
Toxin_ONT <- ONT %>% group_by(Toxin_confidence_level, Sample) %>% summarise(RNum_Gi=sum(RNum_Gi))
Toxin_ONT <- left_join(Toxin_ONT, Toxin, by="Toxin_confidence_level")
# Virulence prediction
Virulence_confidence_level <- c("-","1","2","3","4")
virulence_prediction <- c("non-pathogenic","secreted","non-secreted","non-pathogenic","non-pathogenic")
Virulence <- data.frame(Virulence_confidence_level,virulence_prediction)
Virulence_ONT <- ONT %>% group_by(Virulence_confidence_level, Sample) %>% summarise(RNum_Gi=sum(RNum_Gi))
Virulence_ONT <- left_join(Virulence_ONT, Virulence)
Virulence_ONT <- Virulence_ONT %>% group_by(virulence_prediction, Sample) %>% summarise(RNum_Gi=sum(RNum_Gi))
# AMR prediction
AMR_ONT <- ONT %>% select(10,15,16)
AMR_ONT$AMR <- ifelse(AMR_ONT$AMR_Category == "-", "-", "AMR")
## Overall AMR
AMR_ONT_overall <- AMR_ONT %>% group_by(AMR, Sample) %>% summarise(RNum_Gi=sum(RNum_Gi))
## AMR category
AMR_ONT_category <- AMR_ONT %>% group_by(AMR_Category, Sample) %>% summarise(RNum_Gi=sum(RNum_Gi))
ONT <- read.csv("~/Documents/R_data/nanopore_ONT/pathofact_AMR/PathoFact_ONT.csv", row.names=1)
# Toxin prediction
Toxin_confidence_level <- c("-","1","2")
Toxin_prediction <- c("non-pathogenic","secreted","non-secreted")
Toxin <- data.frame(Toxin_confidence_level,Toxin_prediction)
Toxin_ONT <- ONT %>% group_by(Toxin_confidence_level, Sample) %>% summarise(RNum_Gi=sum(RNum_Gi))
Toxin_ONT <- left_join(Toxin_ONT, Toxin, by="Toxin_confidence_level")
# Virulence prediction
Virulence_confidence_level <- c("-","1","2","3","4")
virulence_prediction <- c("non-pathogenic","secreted","non-secreted","non-pathogenic","non-pathogenic")
Virulence <- data.frame(Virulence_confidence_level,virulence_prediction)
Virulence_ONT <- ONT %>% group_by(Virulence_confidence_level, Sample) %>% summarise(RNum_Gi=sum(RNum_Gi))
Virulence_ONT <- left_join(Virulence_ONT, Virulence)
Virulence_ONT <- Virulence_ONT %>% group_by(virulence_prediction, Sample) %>% summarise(RNum_Gi=sum(RNum_Gi))
# AMR prediction
AMR_ONT <- ONT %>% select(10,15,16)
AMR_ONT$AMR <- ifelse(AMR_ONT$AMR_Category == "-", "-", "AMR")
## Overall AMR
AMR_ONT_overall <- AMR_ONT %>% group_by(AMR, Sample) %>% summarise(RNum_Gi=sum(RNum_Gi))
## AMR category
AMR_ONT_category <- AMR_ONT %>% group_by(AMR_Category, Sample) %>% summarise(RNum_Gi=sum(RNum_Gi))
###########
# Figures #
###########
#FIGURES
#set theme
theme_set(theme_bw() +
theme(strip.background = element_rect(colour = "black", fill = "white"), strip.text = element_text(size=14, family="Arial")) +
theme(axis.text.x = element_text(angle = 90, size = 12, family = "Arial", hjust = 0.95),
axis.text.y = element_text(size = 14, family = "Arial"),
axis.title.y = element_text(size = 12, family = "Arial"),
axis.title.x=element_text(size = 14, face = "bold", family = "Arial"),
axis.ticks.x=element_blank()) +
theme(plot.title = element_text(hjust = 0.5)) +
theme(legend.text = element_text(size = 9, family = "Arial"),
legend.title = element_text(size = 9, family = "Arial", face = "bold"), legend.direction = "vertical", legend.box = "vertical"))
# Toxin Figure
Toxin_ONT_figure <- Toxin_ONT %>% filter(Toxin_prediction != "non-pathogenic")
Toxin_plot <- Toxin_ONT_figure %>% ggplot(aes(x=Sample, y=RNum_Gi, fill = Sample)) +
geom_bar(stat = "identity") +
facet_grid(~ Toxin_prediction) +
xlab(element_blank()) +
ylab("relative abundance (RNum_Gi)") +
ggtitle("Toxin") +
theme(legend.position = "none") # out comment for legend
# Virulence Figure
Virulence_ONT_figure <- Virulence_ONT %>% filter(virulence_prediction != "non-pathogenic")
Virulence_plot <- Virulence_ONT_figure %>% ggplot(aes(x=Sample, y=RNum_Gi, fill = Sample)) +
geom_bar(stat = "identity") +
facet_grid(~ virulence_prediction) +
xlab(element_blank()) +
ylab("relative abundance (RNum_Gi)") +
ggtitle("Virulence") +
theme(legend.position = "none")
# AMR overall Figure
AMR_ONT_overall_Figure <- AMR_ONT_overall %>% filter(AMR != "-")
AMR_plot <- AMR_ONT_overall_Figure %>% ggplot(aes(x=Sample, y=RNum_Gi, fill = Sample)) +
geom_bar(stat = "identity") +
facet_grid(~ AMR) +
xlab(element_blank()) +
ylab("relative abundance (RNum_Gi)") +
ggtitle("AMR")
# Combine figures
library(cowplot)
plot_grid(Virulence_plot, Toxin_plot, AMR_plot, nrow = 1, labels = "auto")
Loading