Skip to content
Snippets Groups Projects
Experiment_3_reactive_astrocyte_Part3 15.8 KiB
Newer Older
Sofia Farina's avatar
Sofia Farina committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
"""

Solving the metabolic system in a reactive astrocytic domain

"""

import numpy as np
from dolfin import *
from cutfem import *
from timeit import default_timer as timer
from Dimensionless_parameters import *

parameters["form_compiler"]["no-evaluate_basis_derivatives"] = False
parameters['allow_extrapolation'] = True
# Start timer
startime = timer()

date = time.strftime("%d%m%Y")

############################

#   READ FROM HDF5 File  #

############################

f = HDF5File(mpi_comm_world(),  './AD_results_'+ date + '/hdfFile', 'r')
bg_mesh = Mesh()
f.read(bg_mesh, "bg_mesh", False)
W = FunctionSpace(bg_mesh, "CG", 1)
level_set = Function(W)
f.read(level_set, 'level_set')
f.close()


# read the volume from part 1
volume = np.load('./AD_results_' + date + '/Volume.npy')


mesh = CutFEMTools_fictitious_domain_mesh(bg_mesh,level_set,0,0)

L = np.load('./AD_results_' + date + '/L.npy')

# Define the sum of ATP+ADP inside the cell
sum_atp_adp = 3.2
# define the dimensionless parameter alpha
alpha = 0.16


# define the dimensionless diffusion concentration for each species
D_a_bar, D_b_bar, D_c_bar, D_d_bar, D_e_bar, D_f_bar = dimensionless_diffusion_coeff()

# Dimensionless parameters
t_c, f_bar, lac_bar, beta_a, beta_b, beta_c, beta_d, gamma_b, gamma_c, gamma_d, gamma_e, mu_e, mu_g, csi_b, csi_c, csi_e, tau_b, tau_c = dim_param(L, alpha, sum_atp_adp, 1.0)

# store the dimensionless time
np.save('./AD_results_' + date + '/t_c.npy', t_c)

# Define final dimensionless time
T = 90/t_c # final time
print('final time', T)
num_step = 250 # number of time step
dt = T / num_step
k = Constant(dt)

# cutfem parameters
beta = 10.0
gamma =0.1

# compute normals
n = FacetNormal(mesh)
h = CellSize(mesh)

# Compute Mesh -Levelset intersection and corresponding marker
mesh_cutter = MeshCutter(mesh,level_set)

# Diminishing quadrature points
q_degree = 3

# Define new measures associated with the interior domains and facets
dx = Measure("dx")[mesh_cutter.domain_marker()]
dS = Measure("dS")[mesh_cutter.interior_facet_marker(0)]
dxq = dc(0, metadata={"num_cells": 1, 'quadrature_degree': q_degree})
dsq = dc(1, metadata={"num_cells": 1})

dxc = dx(0, metadata={'quadrature_degree': q_degree}) + dxq

# Finite Element space for the concentration
T = FunctionSpace(mesh,"P",1)
V0 = MixedFunctionSpace([T, T, T, T, T, T])

# Define test functions
(v_1, v_2, v_3, v_4, v_5, v_6) = TestFunctions(V0)

# Define Trial functions which must be Functions instead of Trial Functions cause the pb is non linear
u = Function (V0)

# Define the initial condition of concetrations
a_0 = 0.0
b_0 = 1.6 / sum_atp_adp
c_0 = 1.6 / sum_atp_adp
d_0 = 0.0
e_0 = 0.0
f_0 = 0.0


u_0 = Expression(('a_0', 'b_0', 'c_0','d_0', 'e_0', 'f_0'), a_0=a_0, b_0=b_0, c_0=c_0, d_0=d_0, e_0=e_0, f_0=f_0, degree=1)

u_n = interpolate(u_0, V0)

a, b, c, d, e, f = split(u)
a_n, b_n, c_n, d_n, e_n, f_n = split(u_n)

# Reaction sites 

from Enzymes import Gauss_expression_3d


# From Part 2 read the coordinates of the reaction sites
list_of_enzymes = np.load('./AD_results_' + date + '/enzymes_coordinates.npy')

M = len(list_of_enzymes[0])


coordinate_enzymes_hxk = list_of_enzymes[0:3]
coordinate_enzymes_pyrk = list_of_enzymes[3:6]
coordinate_enzymes_ldh = list_of_enzymes[6:9]

# Read coordinates of mitochondria
mito = np.load('Images/AD_mito4cutfem_scaled_sigma.npy')
mito_points = mito.T

# Read the adaptive parameter eta
eta_hxk, eta_pyrk, eta_ldh, eta_mito = np.load('./AD_results_' + date + '/eta.npy')

# Variance dimensionless
sigma = 1./L

def Sum_Gaussian_Mito(M, coordinate_enzymes_test, sigma):
    Gaussian = 0
    for i in range(M):
        Gaussian += Gauss_expression_3d(coordinate_enzymes_test[0,i], coordinate_enzymes_test[1,i],coordinate_enzymes_test[2,i], sigma[i])
    return(Gaussian)

def Sum_Gaussian(M, coordinate_enzymes_test, sigma):
    if M == 1:
        Gaussian = Gauss_expression_3d(coordinate_enzymes_test[0], coordinate_enzymes_test[1],coordinate_enzymes_test[2], sigma)
    else:
        Gaussian = 0
        for i in range(M):
            Gaussian += Gauss_expression_3d(coordinate_enzymes_test[0,i], coordinate_enzymes_test[1,i],coordinate_enzymes_test[2,i], sigma)
    return(Gaussian)

Gaussian_hxk = Sum_Gaussian(M, coordinate_enzymes_hxk, sigma)
Gaussian_pyrk = Sum_Gaussian(M, coordinate_enzymes_pyrk, sigma)
Gaussian_ldh = Sum_Gaussian(M, coordinate_enzymes_ldh, sigma)
Gaussian_mito = Sum_Gaussian_Mito(len(mito.T[0]), mito_points[:-1], mito_points[-1])



# Reaction rates 
k_hxk = Constant(0.0619)
k_pyrk = Constant(1.92)
k_ldh = Constant(0.719)
k_mito = Constant(0.0813)

K_act = Constant(0.169)

# Spatial reaction rates
K_hxk = Gaussian_hxk/eta_hxk  * k_hxk *  Constant(volume)
K_pyrk = Gaussian_pyrk/eta_pyrk  * k_pyrk *  Constant(volume)
K_ldh = Gaussian_ldh/eta_ldh  * k_ldh *  Constant(volume)
K_mito = Gaussian_mito/eta_mito  * k_mito *  Constant(volume)


################################################################

# Define the source term

# read the subdomain volume computed in Part 2
subdomain_volume = np.load('./AD_results_' + date + '/subdomain_volume_glc.npy')

influx =  f_bar * volume /subdomain_volume

radius_influx = 0.0307

x_infl, y_infl, z_infl =  0.313278, 0.520833, 0.0302059
x_infl2, y_infl2, z_infl2 = 0.104167, 0.0, 0.0815185
x_infl3, y_infl3, z_infl3 = 0.364583, 0.572917, 0.0402746

f_1 = Expression('(pow(x[0] - x_0,2) + pow(x[1] - y_0,2) + pow(x[2]- z_0,2)) < (r * r) ? influx : 0', influx=influx, r=radius_influx, x_0 = x_infl , y_0 = y_infl, z_0 = z_infl, degree=1)
f_1 += Expression('(pow(x[0] - x_0,2) + pow(x[1] - y_0,2) + pow(x[2]- z_0,2)) < (r * r) ? influx : 0', influx=influx, r=radius_influx, x_0 = x_infl2 , y_0 = y_infl2, z_0 = z_infl2, degree=1)
f_1 += Expression('(pow(x[0] - x_0,2) + pow(x[1] - y_0,2) + pow(x[2]- z_0,2)) < (r * r) ? influx : 0', influx=influx, r=radius_influx, x_0 = x_infl3, y_0 = y_infl3, z_0 = z_infl3, degree=1)

# Define Lac

subdomain_outflux_volume = np.load('./AD_results_' + date + '/subdomain_volume_lac.npy')

outflux = lac_bar * volume/ subdomain_outflux_volume

radius_outflux = 0.035

x_out, y_out, z_out = 0.923611, 1., 0.0203796
x_out2, y_out2, z_out2 =  1., 0.909722, 0.0135864
x_out3, y_out3, z_out3 = 0.506944, 0.993056, 0.0543457
x_out4, y_out4, z_out4 =0.989583, 0.510142, 0.0402746

eta_f = Expression('(pow(x[0] - x_0,2) + pow(x[1] - y_0,2) + pow(x[2]- z_0,2)) < (r * r) ? outflux : 0', outflux = outflux, r=radius_outflux, x_0 = x_out , y_0 = y_out, z_0 = z_out, degree=1)
eta_f += Expression('(pow(x[0] - x_0,2) + pow(x[1] - y_0,2) + pow(x[2]- z_0,2)) < (r * r) ? outflux : 0', outflux = outflux, r=radius_outflux, x_0 = x_out2 , y_0 = y_out2, z_0 = z_out2, degree=1)
eta_f += Expression('(pow(x[0] - x_0,2) + pow(x[1] - y_0,2) + pow(x[2]- z_0,2)) < (r * r) ? outflux : 0', outflux = outflux, r=radius_outflux, x_0 = x_out3, y_0 = y_out3, z_0 = z_out3, degree=1)
eta_f += Expression('(pow(x[0] - x_0,2) + pow(x[1] - y_0,2) + pow(x[2]- z_0,2)) < (r * r) ? outflux : 0', outflux = outflux, r=radius_outflux, x_0 = x_out4, y_0 = y_out4, z_0 = z_out4, degree=1)

#  Weak formulation dimensionless system

F = ((a - a_n) / k) * v_1 * dxc \
    + D_a_bar * dot(grad(a), grad(v_1)) * dxc + K_hxk * beta_a * a * b**2 * v_1 * dxc \
    + ((b - b_n) / k) * v_2 * dxc  \
    + D_b_bar * dot(grad(b), grad(v_2)) * dxc + 2 * K_hxk * beta_b * a * b**2 * v_2 * dxc - 2 * K_pyrk * gamma_b * d * c**2 * v_2 * dxc - 28 * K_mito * csi_b * e * c**28 * v_2 * dxc + K_act * tau_b * b * v_2 * dxc\
    + ((c - c_n) / k)*v_3 * dxc \
    + D_c_bar * dot(grad(c), grad(v_3)) * dxc - 2 * K_hxk * beta_c * a * b**2 * v_3 * dxc  + 2 * K_pyrk * gamma_c * d * c**2 * v_3 * dxc - K_act *tau_c * b * v_3 * dxc + 28 * K_mito * csi_c * e * c**28 * v_3 * dxc\
    + ((d - d_n) / k)*v_4 * dxc\
    + D_d_bar * dot(grad(d),grad(v_4)) * dxc - 2 * K_hxk * beta_d * a * b**2 * v_4 * dxc + K_pyrk * gamma_d * d * c**2 * v_4 * dxc\
    + ((e - e_n) / k)*v_5 * dxc\
    + D_e_bar * dot(grad(e),grad(v_5)) * dxc - K_pyrk * gamma_e * d * c**2 * v_5 * dxc + K_ldh * mu_e * e * v_5 * dxc + K_mito * csi_e * e * c**28 * v_5 * dxc\
    + ((f - f_n) / k)*v_6 * dxc\
    + D_f_bar * dot(grad(f),grad(v_6)) * dxc - K_ldh * mu_g * e * v_6 * dxc + eta_f * f * v_6 * dxc\
    - f_1 * v_1 * dxc


F += avg(gamma) * avg(h) * D_a_bar * dot(jump(grad(a), n), jump(grad(v_1), n)) * dS(1) + avg(gamma) * avg(h) * D_b_bar *dot(jump(grad(b), n), jump(grad(v_2), n)) * dS(1)\
    + avg(gamma) * avg(h) * D_c_bar * dot(jump(grad(c), n), jump(grad(v_3), n)) * dS(1) + avg(gamma) * avg(h) * D_d_bar * dot(jump(grad(d), n), jump(grad(v_4), n)) * dS(1)\
    + avg(gamma) * avg(h) * D_e_bar * dot(jump(grad(e), n), jump(grad(v_5), n)) * dS(1) + avg(gamma) * avg(h) * D_f_bar * dot(jump(grad(f), n), jump(grad(v_6), n)) * dS(1)



#Create VTK files for visualization output
vtkfile_a = File('AD_results_' + date + '/a/a.pvd')
vtkfile_b = File('AD_results_' + date + '/b/b.pvd')
vtkfile_c = File('AD_results_' + date + '/c/c.pvd')
vtkfile_d = File('AD_results_' + date + '/d/d.pvd')
vtkfile_e = File('AD_results_' + date + '/e/e.pvd')
vtkfile_f = File('AD_results_' + date + '/f/f.pvd')

# Compute Jacobian
J = derivative(F, u)

# Fictitious domain
composite_mesh = CompositeMesh()
composite_mesh.add(mesh)

V = CompositeFunctionSpace(composite_mesh)
V.add(V0);
V.build();

# Constrain dofs outside
FidoTools_compute_constrained_dofs(V, mesh_cutter)

a = FidoForm(V, V)
form_a = create_dolfin_form(J)
a.add(form_a, mesh_cutter)

L = FidoForm(V)
form_L = create_dolfin_form(F)
L.add(form_L, mesh_cutter);

# Space for the solution
cutmesh0 = CutFEMTools_physical_domain_mesh(mesh, mesh_cutter.cut_cells(0), mesh_cutter.domain_marker(), 0);
V0Phys = FunctionSpace(cutmesh0, "CG", 1);

a_inter = Function(V0Phys);
b_inter = Function(V0Phys);
c_inter = Function(V0Phys);
d_inter = Function(V0Phys);
e_inter = Function(V0Phys);
f_inter = Function(V0Phys);

# Time stepping
t = [0.0]

# Function that compute the average concentration inside the astrocyte
def compute_average_concentration(conc, V):

    int_conc = conc * dxc

    form_conc_mean = create_dolfin_form(int_conc)

    composite_form_conc_mean = CompositeForm(V)
    composite_form_conc_mean.add(form_conc_mean)

    cut_cells = mesh_cutter.cut_cells(0)

    quadrature = Quadrature(cut_cells.type().cell_type(),cut_cells.geometry().dim(),order=2)

    composite_form_conc_mean.cut_form(0).set_quadrature(0, quadrature);
    composite_form_conc_mean.cut_form(0).set_cut_mesh(0, cut_cells);
    composite_form_conc_mean.cut_form(0).add_single_parent_mesh_id(0, 0);

    mean_conc = composite_assemble(composite_form_conc_mean)

    return(mean_conc)

def compute_LAC_efflux(bg_mesh, level_set, subdom2comp):

    r = radius_outflux

    class Sub_Efflux(SubDomain):
        def inside(self, x, on_boundary):
            return ((pow(x[0] - x_out, 2) + pow(x[1] - y_out, 2) + pow(x[2] - z_out, 2)) <= (r * r))

    class Sub_Efflux2(SubDomain):
        def inside(self, x, on_boundary):
                return ( (pow(x[0] - x_out2, 2) + pow(x[1] - y_out2, 2) + pow(x[2] - z_out2, 2)) < (r * r))

    class Sub_Efflux3(SubDomain):
        def inside(self, x, on_boundary):
                return ( (pow(x[0] - x_out3, 2) + pow(x[1] - y_out3, 2) + pow(x[2] - z_out3, 2)) < (r * r) )

    class Sub_Efflux4(SubDomain):
        def inside(self, x, on_boundary):
                return ( (pow(x[0] - x_out4, 2) + pow(x[1] - y_out4, 2) + pow(x[2] - z_out4, 2)) < (r * r) )

    # Create mesh

    mesh = CutFEMTools_fictitious_domain_mesh(bg_mesh, level_set, 0, 0)

    # Compute Mesh -Levelset intersection and corresponding marker
    mesh_cutter = MeshCutter(mesh, level_set)

    marker_test = mesh_cutter.domain_marker()

    Sub_Efflux().mark(marker_test, 50)
    Sub_Efflux2().mark(marker_test, 50)
    Sub_Efflux3().mark(marker_test, 50)
    Sub_Efflux4().mark(marker_test, 50)

    # file = File("./test_domain_marker.pvd")
    # file << marker_test

    # Define new measures associated with the interior domains and facets
    dx = Measure("dx", domain=mesh)[marker_test]
    dxq = dc(0, metadata={"num_cells": 1})  # cut cells inside the Circle

    dx_eff = dx(50) + dxq

    V0 = FunctionSpace(mesh, "Lagrange", 1)

    # Fictitious domain
    composite_mesh = CompositeMesh()
    composite_mesh.add(mesh)

    V = CompositeFunctionSpace(composite_mesh)
    V.add(V0);
    V.build();

    # Constrain dofs outside
    FidoTools_compute_constrained_dofs(V, mesh_cutter)

    u_e_V0 = project(subdom2comp, V0)

    psi0 = u_e_V0 * dx_eff

    form_psi0 = create_dolfin_form(psi0)

    composite_form_psi0 = CompositeForm(V)
    composite_form_psi0.add(form_psi0)

    area_ls_cutfem = composite_assemble(composite_form_psi0)

    return(area_ls_cutfem)

# Empty list to save the values

list_a =[]
list_b =[]
list_c =[]
list_d =[]
list_e = []
list_f = []

time_list = []


# add the time = 0
time_list.append(t[0])

mean_a_ = compute_average_concentration(a_n, V)
mean_b_ = compute_average_concentration(b_n, V)
mean_c_ = compute_average_concentration(c_n, V)
mean_d_ = compute_average_concentration(d_n, V)
mean_e_ = compute_average_concentration(e_n, V)
mean_f_ = compute_average_concentration(f_n, V)


list_a.append(mean_a_/ volume)
list_b.append(mean_b_/ volume)
list_c.append(mean_c_/ volume)
list_d.append(mean_d_/ volume)
list_e.append(mean_e_/ volume)
list_f.append(mean_f_/ volume)

efflux_lac = []

lac_eff = compute_LAC_efflux(bg_mesh, level_set, f_n)
efflux_lac.append(lac_eff)

# Parameter for solver
Nmax = 50
abs_tol = 1.0e-12
rel_tol = 1.0e-07


# Initial residual
initial_residual = composite_assemble(L)
absolute0 = initial_residual.norm('l2')

for i in range(num_step):
    print("Timestep", i)
    print("Time", t)

    n = 1
    while n < Nmax:

        A = composite_assemble(a)
        b = composite_assemble(L)

        uc = CompositeFunction(V)

        solve(A, uc.vector(), -b, 'mumps')

        u.vector().axpy(1.0, uc.part(0).vector())

        residual = composite_assemble(L)

        # absolute residual
        absolute = residual.norm('l2')

        # relative residual
        relative = absolute / absolute0

        if absolute < abs_tol or relative < rel_tol:
            break
        else:
            n += 1

    _a, _b, _c, _d, _e, _f = u.split()

    ## To save the vtk uncomment this section.
    # 
    ## save  GLC
    #a_inter.interpolate(_a);
    ## save  ATP
    #b_inter.interpolate(_b);
    ## save  ADP
    #c_inter.interpolate(_c);
    ## save  GLY
    #d_inter.interpolate(_d);
    ## save  PYR
    #e_inter.interpolate(_e);
    ## save  LAC
    #f_inter.interpolate(_f);
    #
    #vtkfile_a << (a_inter, t[0])
    #vtkfile_b << (b_inter, t[0])
    #vtkfile_c << (c_inter, t[0])
    #vtkfile_d << (d_inter, t[0])
    #vtkfile_e << (e_inter, t[0])
    #vtkfile_f << (f_inter, t[0])
    
    u_n._assign(u)

    t[0] = t[0] + dt

    time_list.append(t[0])
    
    #Compute average concentration inside astrocyte of each species
    mean_a_ = compute_average_concentration(_a, V)
    mean_b_ = compute_average_concentration(_b, V)
    mean_c_ = compute_average_concentration(_c, V)
    mean_d_ = compute_average_concentration(_d, V)
    mean_e_ = compute_average_concentration(_e, V)
    mean_f_ = compute_average_concentration(_f, V)


    list_a.append(mean_a_/ volume)
    list_b.append(mean_b_/ volume)
    list_c.append(mean_c_/ volume)
    list_d.append(mean_d_/ volume)
    list_e.append(mean_e_/ volume)
    list_f.append(mean_f_/ volume)

    # Compute the LAC concentration in the subregions where the efflux is defined
    lac_eff = compute_LAC_efflux(bg_mesh, level_set, _f)
    efflux_lac.append(lac_eff)

# stop time
aftersolve = timer()
tottime = aftersolve-startime
print('Final time', tottime)

# Create a single list with all the solutions
list_of_list = [list_a, list_b, list_c, list_d, list_e, list_f, time_list]

# save using numpy
print(list_a, list_b, list_c, list_d, list_e, list_f, time_list)
np.save('./AD_results_' + date + '/AD_3Dastro_list' + pathology, np.asarray(list_of_list))

np.save('./AD_results_' + date + '/lac_efflux' + pathology, np.asarray(efflux_lac))