Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
"""
Solving the metabolic system in a reactive astrocytic domain
"""
import numpy as np
from dolfin import *
from cutfem import *
from timeit import default_timer as timer
from Dimensionless_parameters import *
parameters["form_compiler"]["no-evaluate_basis_derivatives"] = False
parameters['allow_extrapolation'] = True
# Start timer
startime = timer()
date = time.strftime("%d%m%Y")
############################
# READ FROM HDF5 File #
############################
f = HDF5File(mpi_comm_world(), './AD_results_'+ date + '/hdfFile', 'r')
bg_mesh = Mesh()
f.read(bg_mesh, "bg_mesh", False)
W = FunctionSpace(bg_mesh, "CG", 1)
level_set = Function(W)
f.read(level_set, 'level_set')
f.close()
# read the volume from part 1
volume = np.load('./AD_results_' + date + '/Volume.npy')
mesh = CutFEMTools_fictitious_domain_mesh(bg_mesh,level_set,0,0)
L = np.load('./AD_results_' + date + '/L.npy')
# Define the sum of ATP+ADP inside the cell
sum_atp_adp = 3.2
# define the dimensionless parameter alpha
alpha = 0.16
# define the dimensionless diffusion concentration for each species
D_a_bar, D_b_bar, D_c_bar, D_d_bar, D_e_bar, D_f_bar = dimensionless_diffusion_coeff()
# Dimensionless parameters
t_c, f_bar, lac_bar, beta_a, beta_b, beta_c, beta_d, gamma_b, gamma_c, gamma_d, gamma_e, mu_e, mu_g, csi_b, csi_c, csi_e, tau_b, tau_c = dim_param(L, alpha, sum_atp_adp, 1.0)
# store the dimensionless time
np.save('./AD_results_' + date + '/t_c.npy', t_c)
# Define final dimensionless time
T = 90/t_c # final time
print('final time', T)
num_step = 250 # number of time step
dt = T / num_step
k = Constant(dt)
# cutfem parameters
beta = 10.0
gamma =0.1
# compute normals
n = FacetNormal(mesh)
h = CellSize(mesh)
# Compute Mesh -Levelset intersection and corresponding marker
mesh_cutter = MeshCutter(mesh,level_set)
# Diminishing quadrature points
q_degree = 3
# Define new measures associated with the interior domains and facets
dx = Measure("dx")[mesh_cutter.domain_marker()]
dS = Measure("dS")[mesh_cutter.interior_facet_marker(0)]
dxq = dc(0, metadata={"num_cells": 1, 'quadrature_degree': q_degree})
dsq = dc(1, metadata={"num_cells": 1})
dxc = dx(0, metadata={'quadrature_degree': q_degree}) + dxq
# Finite Element space for the concentration
T = FunctionSpace(mesh,"P",1)
V0 = MixedFunctionSpace([T, T, T, T, T, T])
# Define test functions
(v_1, v_2, v_3, v_4, v_5, v_6) = TestFunctions(V0)
# Define Trial functions which must be Functions instead of Trial Functions cause the pb is non linear
u = Function (V0)
# Define the initial condition of concetrations
a_0 = 0.0
b_0 = 1.6 / sum_atp_adp
c_0 = 1.6 / sum_atp_adp
d_0 = 0.0
e_0 = 0.0
f_0 = 0.0
u_0 = Expression(('a_0', 'b_0', 'c_0','d_0', 'e_0', 'f_0'), a_0=a_0, b_0=b_0, c_0=c_0, d_0=d_0, e_0=e_0, f_0=f_0, degree=1)
u_n = interpolate(u_0, V0)
a, b, c, d, e, f = split(u)
a_n, b_n, c_n, d_n, e_n, f_n = split(u_n)
# Reaction sites
from Enzymes import Gauss_expression_3d
# From Part 2 read the coordinates of the reaction sites
list_of_enzymes = np.load('./AD_results_' + date + '/enzymes_coordinates.npy')
M = len(list_of_enzymes[0])
coordinate_enzymes_hxk = list_of_enzymes[0:3]
coordinate_enzymes_pyrk = list_of_enzymes[3:6]
coordinate_enzymes_ldh = list_of_enzymes[6:9]
# Read coordinates of mitochondria
mito = np.load('Images/AD_mito4cutfem_scaled_sigma.npy')
mito_points = mito.T
# Read the adaptive parameter eta
eta_hxk, eta_pyrk, eta_ldh, eta_mito = np.load('./AD_results_' + date + '/eta.npy')
# Variance dimensionless
sigma = 1./L
def Sum_Gaussian_Mito(M, coordinate_enzymes_test, sigma):
Gaussian = 0
for i in range(M):
Gaussian += Gauss_expression_3d(coordinate_enzymes_test[0,i], coordinate_enzymes_test[1,i],coordinate_enzymes_test[2,i], sigma[i])
return(Gaussian)
def Sum_Gaussian(M, coordinate_enzymes_test, sigma):
if M == 1:
Gaussian = Gauss_expression_3d(coordinate_enzymes_test[0], coordinate_enzymes_test[1],coordinate_enzymes_test[2], sigma)
else:
Gaussian = 0
for i in range(M):
Gaussian += Gauss_expression_3d(coordinate_enzymes_test[0,i], coordinate_enzymes_test[1,i],coordinate_enzymes_test[2,i], sigma)
return(Gaussian)
Gaussian_hxk = Sum_Gaussian(M, coordinate_enzymes_hxk, sigma)
Gaussian_pyrk = Sum_Gaussian(M, coordinate_enzymes_pyrk, sigma)
Gaussian_ldh = Sum_Gaussian(M, coordinate_enzymes_ldh, sigma)
Gaussian_mito = Sum_Gaussian_Mito(len(mito.T[0]), mito_points[:-1], mito_points[-1])
# Reaction rates
k_hxk = Constant(0.0619)
k_pyrk = Constant(1.92)
k_ldh = Constant(0.719)
k_mito = Constant(0.0813)
K_act = Constant(0.169)
# Spatial reaction rates
K_hxk = Gaussian_hxk/eta_hxk * k_hxk * Constant(volume)
K_pyrk = Gaussian_pyrk/eta_pyrk * k_pyrk * Constant(volume)
K_ldh = Gaussian_ldh/eta_ldh * k_ldh * Constant(volume)
K_mito = Gaussian_mito/eta_mito * k_mito * Constant(volume)
################################################################
# Define the source term
# read the subdomain volume computed in Part 2
subdomain_volume = np.load('./AD_results_' + date + '/subdomain_volume_glc.npy')
influx = f_bar * volume /subdomain_volume
radius_influx = 0.0307
x_infl, y_infl, z_infl = 0.313278, 0.520833, 0.0302059
x_infl2, y_infl2, z_infl2 = 0.104167, 0.0, 0.0815185
x_infl3, y_infl3, z_infl3 = 0.364583, 0.572917, 0.0402746
f_1 = Expression('(pow(x[0] - x_0,2) + pow(x[1] - y_0,2) + pow(x[2]- z_0,2)) < (r * r) ? influx : 0', influx=influx, r=radius_influx, x_0 = x_infl , y_0 = y_infl, z_0 = z_infl, degree=1)
f_1 += Expression('(pow(x[0] - x_0,2) + pow(x[1] - y_0,2) + pow(x[2]- z_0,2)) < (r * r) ? influx : 0', influx=influx, r=radius_influx, x_0 = x_infl2 , y_0 = y_infl2, z_0 = z_infl2, degree=1)
f_1 += Expression('(pow(x[0] - x_0,2) + pow(x[1] - y_0,2) + pow(x[2]- z_0,2)) < (r * r) ? influx : 0', influx=influx, r=radius_influx, x_0 = x_infl3, y_0 = y_infl3, z_0 = z_infl3, degree=1)
# Define Lac
subdomain_outflux_volume = np.load('./AD_results_' + date + '/subdomain_volume_lac.npy')
outflux = lac_bar * volume/ subdomain_outflux_volume
radius_outflux = 0.035
x_out, y_out, z_out = 0.923611, 1., 0.0203796
x_out2, y_out2, z_out2 = 1., 0.909722, 0.0135864
x_out3, y_out3, z_out3 = 0.506944, 0.993056, 0.0543457
x_out4, y_out4, z_out4 =0.989583, 0.510142, 0.0402746
eta_f = Expression('(pow(x[0] - x_0,2) + pow(x[1] - y_0,2) + pow(x[2]- z_0,2)) < (r * r) ? outflux : 0', outflux = outflux, r=radius_outflux, x_0 = x_out , y_0 = y_out, z_0 = z_out, degree=1)
eta_f += Expression('(pow(x[0] - x_0,2) + pow(x[1] - y_0,2) + pow(x[2]- z_0,2)) < (r * r) ? outflux : 0', outflux = outflux, r=radius_outflux, x_0 = x_out2 , y_0 = y_out2, z_0 = z_out2, degree=1)
eta_f += Expression('(pow(x[0] - x_0,2) + pow(x[1] - y_0,2) + pow(x[2]- z_0,2)) < (r * r) ? outflux : 0', outflux = outflux, r=radius_outflux, x_0 = x_out3, y_0 = y_out3, z_0 = z_out3, degree=1)
eta_f += Expression('(pow(x[0] - x_0,2) + pow(x[1] - y_0,2) + pow(x[2]- z_0,2)) < (r * r) ? outflux : 0', outflux = outflux, r=radius_outflux, x_0 = x_out4, y_0 = y_out4, z_0 = z_out4, degree=1)
# Weak formulation dimensionless system
F = ((a - a_n) / k) * v_1 * dxc \
+ D_a_bar * dot(grad(a), grad(v_1)) * dxc + K_hxk * beta_a * a * b**2 * v_1 * dxc \
+ ((b - b_n) / k) * v_2 * dxc \
+ D_b_bar * dot(grad(b), grad(v_2)) * dxc + 2 * K_hxk * beta_b * a * b**2 * v_2 * dxc - 2 * K_pyrk * gamma_b * d * c**2 * v_2 * dxc - 28 * K_mito * csi_b * e * c**28 * v_2 * dxc + K_act * tau_b * b * v_2 * dxc\
+ ((c - c_n) / k)*v_3 * dxc \
+ D_c_bar * dot(grad(c), grad(v_3)) * dxc - 2 * K_hxk * beta_c * a * b**2 * v_3 * dxc + 2 * K_pyrk * gamma_c * d * c**2 * v_3 * dxc - K_act *tau_c * b * v_3 * dxc + 28 * K_mito * csi_c * e * c**28 * v_3 * dxc\
+ ((d - d_n) / k)*v_4 * dxc\
+ D_d_bar * dot(grad(d),grad(v_4)) * dxc - 2 * K_hxk * beta_d * a * b**2 * v_4 * dxc + K_pyrk * gamma_d * d * c**2 * v_4 * dxc\
+ ((e - e_n) / k)*v_5 * dxc\
+ D_e_bar * dot(grad(e),grad(v_5)) * dxc - K_pyrk * gamma_e * d * c**2 * v_5 * dxc + K_ldh * mu_e * e * v_5 * dxc + K_mito * csi_e * e * c**28 * v_5 * dxc\
+ ((f - f_n) / k)*v_6 * dxc\
+ D_f_bar * dot(grad(f),grad(v_6)) * dxc - K_ldh * mu_g * e * v_6 * dxc + eta_f * f * v_6 * dxc\
- f_1 * v_1 * dxc
F += avg(gamma) * avg(h) * D_a_bar * dot(jump(grad(a), n), jump(grad(v_1), n)) * dS(1) + avg(gamma) * avg(h) * D_b_bar *dot(jump(grad(b), n), jump(grad(v_2), n)) * dS(1)\
+ avg(gamma) * avg(h) * D_c_bar * dot(jump(grad(c), n), jump(grad(v_3), n)) * dS(1) + avg(gamma) * avg(h) * D_d_bar * dot(jump(grad(d), n), jump(grad(v_4), n)) * dS(1)\
+ avg(gamma) * avg(h) * D_e_bar * dot(jump(grad(e), n), jump(grad(v_5), n)) * dS(1) + avg(gamma) * avg(h) * D_f_bar * dot(jump(grad(f), n), jump(grad(v_6), n)) * dS(1)
#Create VTK files for visualization output
vtkfile_a = File('AD_results_' + date + '/a/a.pvd')
vtkfile_b = File('AD_results_' + date + '/b/b.pvd')
vtkfile_c = File('AD_results_' + date + '/c/c.pvd')
vtkfile_d = File('AD_results_' + date + '/d/d.pvd')
vtkfile_e = File('AD_results_' + date + '/e/e.pvd')
vtkfile_f = File('AD_results_' + date + '/f/f.pvd')
# Compute Jacobian
J = derivative(F, u)
# Fictitious domain
composite_mesh = CompositeMesh()
composite_mesh.add(mesh)
V = CompositeFunctionSpace(composite_mesh)
V.add(V0);
V.build();
# Constrain dofs outside
FidoTools_compute_constrained_dofs(V, mesh_cutter)
a = FidoForm(V, V)
form_a = create_dolfin_form(J)
a.add(form_a, mesh_cutter)
L = FidoForm(V)
form_L = create_dolfin_form(F)
L.add(form_L, mesh_cutter);
# Space for the solution
cutmesh0 = CutFEMTools_physical_domain_mesh(mesh, mesh_cutter.cut_cells(0), mesh_cutter.domain_marker(), 0);
V0Phys = FunctionSpace(cutmesh0, "CG", 1);
a_inter = Function(V0Phys);
b_inter = Function(V0Phys);
c_inter = Function(V0Phys);
d_inter = Function(V0Phys);
e_inter = Function(V0Phys);
f_inter = Function(V0Phys);
# Time stepping
t = [0.0]
# Function that compute the average concentration inside the astrocyte
def compute_average_concentration(conc, V):
int_conc = conc * dxc
form_conc_mean = create_dolfin_form(int_conc)
composite_form_conc_mean = CompositeForm(V)
composite_form_conc_mean.add(form_conc_mean)
cut_cells = mesh_cutter.cut_cells(0)
quadrature = Quadrature(cut_cells.type().cell_type(),cut_cells.geometry().dim(),order=2)
composite_form_conc_mean.cut_form(0).set_quadrature(0, quadrature);
composite_form_conc_mean.cut_form(0).set_cut_mesh(0, cut_cells);
composite_form_conc_mean.cut_form(0).add_single_parent_mesh_id(0, 0);
mean_conc = composite_assemble(composite_form_conc_mean)
return(mean_conc)
def compute_LAC_efflux(bg_mesh, level_set, subdom2comp):
r = radius_outflux
class Sub_Efflux(SubDomain):
def inside(self, x, on_boundary):
return ((pow(x[0] - x_out, 2) + pow(x[1] - y_out, 2) + pow(x[2] - z_out, 2)) <= (r * r))
class Sub_Efflux2(SubDomain):
def inside(self, x, on_boundary):
return ( (pow(x[0] - x_out2, 2) + pow(x[1] - y_out2, 2) + pow(x[2] - z_out2, 2)) < (r * r))
class Sub_Efflux3(SubDomain):
def inside(self, x, on_boundary):
return ( (pow(x[0] - x_out3, 2) + pow(x[1] - y_out3, 2) + pow(x[2] - z_out3, 2)) < (r * r) )
class Sub_Efflux4(SubDomain):
def inside(self, x, on_boundary):
return ( (pow(x[0] - x_out4, 2) + pow(x[1] - y_out4, 2) + pow(x[2] - z_out4, 2)) < (r * r) )
# Create mesh
mesh = CutFEMTools_fictitious_domain_mesh(bg_mesh, level_set, 0, 0)
# Compute Mesh -Levelset intersection and corresponding marker
mesh_cutter = MeshCutter(mesh, level_set)
marker_test = mesh_cutter.domain_marker()
Sub_Efflux().mark(marker_test, 50)
Sub_Efflux2().mark(marker_test, 50)
Sub_Efflux3().mark(marker_test, 50)
Sub_Efflux4().mark(marker_test, 50)
# file = File("./test_domain_marker.pvd")
# file << marker_test
# Define new measures associated with the interior domains and facets
dx = Measure("dx", domain=mesh)[marker_test]
dxq = dc(0, metadata={"num_cells": 1}) # cut cells inside the Circle
dx_eff = dx(50) + dxq
V0 = FunctionSpace(mesh, "Lagrange", 1)
# Fictitious domain
composite_mesh = CompositeMesh()
composite_mesh.add(mesh)
V = CompositeFunctionSpace(composite_mesh)
V.add(V0);
V.build();
# Constrain dofs outside
FidoTools_compute_constrained_dofs(V, mesh_cutter)
u_e_V0 = project(subdom2comp, V0)
psi0 = u_e_V0 * dx_eff
form_psi0 = create_dolfin_form(psi0)
composite_form_psi0 = CompositeForm(V)
composite_form_psi0.add(form_psi0)
area_ls_cutfem = composite_assemble(composite_form_psi0)
return(area_ls_cutfem)
# Empty list to save the values
list_a =[]
list_b =[]
list_c =[]
list_d =[]
list_e = []
list_f = []
time_list = []
# add the time = 0
time_list.append(t[0])
mean_a_ = compute_average_concentration(a_n, V)
mean_b_ = compute_average_concentration(b_n, V)
mean_c_ = compute_average_concentration(c_n, V)
mean_d_ = compute_average_concentration(d_n, V)
mean_e_ = compute_average_concentration(e_n, V)
mean_f_ = compute_average_concentration(f_n, V)
list_a.append(mean_a_/ volume)
list_b.append(mean_b_/ volume)
list_c.append(mean_c_/ volume)
list_d.append(mean_d_/ volume)
list_e.append(mean_e_/ volume)
list_f.append(mean_f_/ volume)
efflux_lac = []
lac_eff = compute_LAC_efflux(bg_mesh, level_set, f_n)
efflux_lac.append(lac_eff)
# Parameter for solver
Nmax = 50
abs_tol = 1.0e-12
rel_tol = 1.0e-07
# Initial residual
initial_residual = composite_assemble(L)
absolute0 = initial_residual.norm('l2')
for i in range(num_step):
print("Timestep", i)
print("Time", t)
n = 1
while n < Nmax:
A = composite_assemble(a)
b = composite_assemble(L)
uc = CompositeFunction(V)
solve(A, uc.vector(), -b, 'mumps')
u.vector().axpy(1.0, uc.part(0).vector())
residual = composite_assemble(L)
# absolute residual
absolute = residual.norm('l2')
# relative residual
relative = absolute / absolute0
if absolute < abs_tol or relative < rel_tol:
break
else:
n += 1
_a, _b, _c, _d, _e, _f = u.split()
## To save the vtk uncomment this section.
#
## save GLC
#a_inter.interpolate(_a);
## save ATP
#b_inter.interpolate(_b);
## save ADP
#c_inter.interpolate(_c);
## save GLY
#d_inter.interpolate(_d);
## save PYR
#e_inter.interpolate(_e);
## save LAC
#f_inter.interpolate(_f);
#
#vtkfile_a << (a_inter, t[0])
#vtkfile_b << (b_inter, t[0])
#vtkfile_c << (c_inter, t[0])
#vtkfile_d << (d_inter, t[0])
#vtkfile_e << (e_inter, t[0])
#vtkfile_f << (f_inter, t[0])
u_n._assign(u)
t[0] = t[0] + dt
time_list.append(t[0])
#Compute average concentration inside astrocyte of each species
mean_a_ = compute_average_concentration(_a, V)
mean_b_ = compute_average_concentration(_b, V)
mean_c_ = compute_average_concentration(_c, V)
mean_d_ = compute_average_concentration(_d, V)
mean_e_ = compute_average_concentration(_e, V)
mean_f_ = compute_average_concentration(_f, V)
list_a.append(mean_a_/ volume)
list_b.append(mean_b_/ volume)
list_c.append(mean_c_/ volume)
list_d.append(mean_d_/ volume)
list_e.append(mean_e_/ volume)
list_f.append(mean_f_/ volume)
# Compute the LAC concentration in the subregions where the efflux is defined
lac_eff = compute_LAC_efflux(bg_mesh, level_set, _f)
efflux_lac.append(lac_eff)
# stop time
aftersolve = timer()
tottime = aftersolve-startime
print('Final time', tottime)
# Create a single list with all the solutions
list_of_list = [list_a, list_b, list_c, list_d, list_e, list_f, time_list]
# save using numpy
print(list_a, list_b, list_c, list_d, list_e, list_f, time_list)
np.save('./AD_results_' + date + '/AD_3Dastro_list' + pathology, np.asarray(list_of_list))
np.save('./AD_results_' + date + '/lac_efflux' + pathology, np.asarray(efflux_lac))